在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
1
2
AB=1,將△ADC沿AC折起,使D到D′.若二面角D′-AC-B為60°,則三棱錐D′-ABC的體積為_(kāi)_____.
設(shè)面ACD′為α,面ABC為β,取AC的中點(diǎn)E,連接D′E,再過(guò)D′作D′O⊥β,垂足為O,連接OE,則D′E⊥AC
∵AC⊥D′E,∴AC⊥OE
∴∠D′EO為二面角a-AC-β的平面角,∴∠D′EO=60°
在直角梯形ABCD中,由已知△DAC為等腰直角三角形,
∴AC=
2
,∠CAB=45°,∴D′E=
1
2
AC=
2
2
,
在直角△D′OE中,D′E=
2
2
,∴D′O=
6
4

∴VD-ABC=
1
3
S△ABC•D′O=
1
3
×
1
2
AC•BC•D′O=
1
6
×
2
×
2
×
6
4
=
6
12

故答案為:
6
12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,M,N分別是A1A,B1B的中點(diǎn).
(1)求直線D1N與平面A1ABB1所成角的大;
(2)求直線CM與D1N所成角的正弦值;
(3)(理科做)求點(diǎn)N到平面D1MB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知邊長(zhǎng)為
m
的正方形ABCj沿對(duì)角線AC折成直二面角,使j到P的位置.
(四)求直線PA與BC所成的角;
(m)若M為線段BC上的動(dòng)點(diǎn),當(dāng)BM:BC為何值時(shí),平面PAC與平面PAM所成的銳二面角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D,D1分別為棱BC,B1C1的中點(diǎn).
(1)求證:直線A1D1平面ADC1
(2)求證:平面ADC1⊥平面BCC1B1;
(3)設(shè)底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三棱錐S-ABC中,底面為邊長(zhǎng)為6的等邊三角形,SA=SB=SC,三棱錐的高為
3
,則側(cè)面與底面所成的二面角為( 。
A.45°B.30°C.60°D.65°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面直角坐標(biāo)系中,A(-2,3),B(3,-2),沿x軸把平面直角坐標(biāo)系折成120°的二面角后,則線段AB的長(zhǎng)度為( 。
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD所在平面與矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中點(diǎn).
(1)求證:AM平面BDE;
(2)求二面角A-BD-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正方形ABCD沿其對(duì)角線AC將△ADC折起,設(shè)AD與平面ABC所成的角為β,當(dāng)β取最大值時(shí),二面角B-AC-D的大小為(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上.
(1)求證:AC⊥平面BB1C1C;
(2)當(dāng)α為何值時(shí),AB1⊥BC1,且使點(diǎn)D恰為BC中點(diǎn)?
(3)(理科做)當(dāng)α=arccos
1
3
,且AC=BC=AA1時(shí),求二面角C1-AB-C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案