精英家教網 > 高中數學 > 題目詳情
已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是( 。
分析:求出f(x)導函數的值域,由直線x+y+m=0都不是f(x)=x3-3ax的切線得到-1不屬于導函數的值域,得到關于a的不等式,求出解集得到a的取值范圍即可.
解答:解:由f(x)=x3-3ax可得f′(x)=3x2-3a∈[-3a,+∞),
∵對任意m∈R,直線x+y+m=0都不是y=f(x)的切線,
∴-1∉[-3a,+∞),
∴-1<-3a,實數a的取值范圍是a<
1
3

故選C.
點評:本題考查用導數求曲線上某點切線的斜率,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得|f(x0)|≥
14
成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得數學公式成立.

查看答案和解析>>

科目:高中數學 來源:2010年遼寧省丹東市高考數學二模試卷(理科)(解析版) 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x,使得成立.

查看答案和解析>>

科目:高中數學 來源:2011年高三數學單元檢測:函數與導數(解析版) 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x,使得成立.

查看答案和解析>>

同步練習冊答案