正項(xiàng)數(shù)列{an}中,a1=1,an+1-
an+1
=an+
an

(1)數(shù)列{
an
}是否為等差數(shù)列?說(shuō)明理由
(2)求an
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)數(shù)列的遞推關(guān)系,利用因式分解法,結(jié)合等差數(shù)列的定義即可判斷數(shù)列{
an
}是否為等差數(shù)列.
(2)根據(jù)數(shù)列{
an
}是等差數(shù)列,結(jié)合等差數(shù)列的通項(xiàng)公式即可求an
解答: 解:(1)由an+1-
an+1
=an+
an
得,
an+1-an=
an+1
+
an
,
即(
an+1
-
an
)(
an+1
+
an
)=
an+1
+
an
,
∵an>0,
an+1
-
an
=1,
則數(shù)列{
an
}是公差d=1的等差數(shù)列,首項(xiàng)為
a1
=1

(2)∵數(shù)列{
an
}是公差d=1的等差數(shù)列,首項(xiàng)為
a1
=1

an
=1+(n-1)×1=n,
則an=n2
點(diǎn)評(píng):本題主要考查等差數(shù)列的判斷以及利用等差數(shù)列求數(shù)列的通項(xiàng)公式,利用因式分解法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論正確的是( 。
A、|
a
b
|=|
a
|•|
b
|
B、若
a
b
都是單位向量,則
a
b
≤1恒成立
C、向量
AB
的起點(diǎn)為A(-2,4),總點(diǎn)為B(2,1),則
BA
與x正方向所夾角余弦為
4
5
D、若
a
=(3,m),且|
a
|=4,則m=
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x-m•sin2x(m∈R).α終邊上一點(diǎn)P(1,-
3
),且f(α)=-3.
(1)求實(shí)數(shù)m的值;
(2)函數(shù)f(x)的圖象向左平移n個(gè)單位后變成偶函數(shù)g(x),求正數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
12
),x∈R,若cosθ=
3
5
,θ∈(
2
,2π),則f(θ-
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四面體ABCD的體積是
1
6
,△ABC是斜邊AB=2的等腰直角三角形,若點(diǎn)A,B,C,D都在半徑為
2
的同一球面上,則D與AB中點(diǎn)的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn
(1)若{an}是公差為d的等差數(shù)列,請(qǐng)寫出并推導(dǎo)Sn的計(jì)算公式;
(2)若an=n,求
1
S1
+
1
S2
+…+
1
Sn
的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相切,則雙曲線的離心率為(  )
A、2
B、
3
2
C、
2
3
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一架飛機(jī)從A地飛到B地,兩地相距700km.飛行員為了避開(kāi)某一區(qū)域的雷雨云層,從機(jī)場(chǎng)起飛后,就沿與原來(lái)飛行方向成21°角的方向飛行,飛行到中途,再沿與原來(lái)的飛行方向成35°夾角的方向繼續(xù)飛行直到終點(diǎn).這樣飛機(jī)的飛行路程比原來(lái)路程700km遠(yuǎn)了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
b2
=1的兩條漸近線的夾角為60°,且焦點(diǎn)到一條漸近線的距離大于
2
2
1+b
,則b=( 。
A、3
B、
1
3
C、
3
D、
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案