已知{an}為等差數(shù)列,a2+a8=
4
3
,則S9等于( 。
A、4B、5C、6D、7
分析:由等差數(shù)列的性質(zhì)可知第1項(xiàng)與第9項(xiàng)的和與第2項(xiàng)與第8項(xiàng)的和相等都等于
4
3
,然后利用等差數(shù)列的前n項(xiàng)和的公式表示出前9項(xiàng)的和,把第1項(xiàng)與第9項(xiàng)的和代入即可求出值.
解答:解:由等差數(shù)列的性質(zhì)可得:a1+a9=a2+a8=
4
3
,
則S9=
9(a1+a9
2
=
4
3
2
=6.
故選C
點(diǎn)評(píng):此題考查學(xué)生掌握等差數(shù)列的性質(zhì),靈活運(yùn)用等差數(shù)列的前n項(xiàng)和的公式化簡(jiǎn)求值,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)an的前n項(xiàng)和為Sn,S10=
3
0
(1+3x)dx
,則a5+a6=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)到{an}中,a1=120,公差d=-4,Sn為其前n項(xiàng)和,若Sn≤an(n≥2).則n的最小值為(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( 。=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年江蘇省蘇州市高三教學(xué)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知命題:“在等差數(shù)(an)中,若4a2+a10+a( )=24,則S11為定值”為真命題,由于印刷問題,括號(hào)處的數(shù)模糊不清,可推得括號(hào)內(nèi)的數(shù)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案