【題目】某省年開始將全面實施新高考方案.在門選擇性考試科目中,物理、歷史這兩門科目采用原始分計分;思想政治、地理、化學(xué)、生物這4門科目采用等級轉(zhuǎn)換賦分,將每科考生的原始分從高到低劃分為,,,個等級,各等級人數(shù)所占比例分別為、、、,并按給定的公式進行轉(zhuǎn)換賦分.該省組織了一次高一年級統(tǒng)一考試,并對思想政治、地理、化學(xué)、生物這4門科目的原始分進行了等級轉(zhuǎn)換賦分.

1)某校生物學(xué)科獲得等級的共有10名學(xué)生,其原始分及轉(zhuǎn)換分如下表:

原始分

91

90

89

88

87

85

83

82

轉(zhuǎn)換分

100

99

97

95

94

91

88

86

人數(shù)

1

1

2

1

2

1

1

1

現(xiàn)從這10名學(xué)生中隨機抽取3人,設(shè)這3人中生物轉(zhuǎn)換分不低于分的人數(shù)為,求的分布列和數(shù)學(xué)期望;

2)假設(shè)該省此次高一學(xué)生生物學(xué)科原始分服從正態(tài)分布.若,令,則,請解決下列問題:

①若以此次高一學(xué)生生物學(xué)科原始分等級的最低分為實施分層教學(xué)的劃線分,試估計該劃線分大約為多少分?(結(jié)果保留為整數(shù))

②現(xiàn)隨機抽取了該省名高一學(xué)生的此次生物學(xué)科的原始分,若這些學(xué)生的原始分相互獨立,記為被抽到的原始分不低于分的學(xué)生人數(shù),求取得最大值時的值.

附:若,則,

【答案】1)分布列詳見解析,數(shù)學(xué)期望為;(2)①69分;②

【解析】

1)寫出隨機變量的所有可能的取值,根據(jù)超幾何分布求出的每個值對應(yīng)的概率,列出分布列,求出數(shù)學(xué)期望;

2)①設(shè)該劃線分為,由求出.由,得.由題意,又,故,故,即可求出;②由題意,根據(jù)獨立重復(fù)實驗的概率計算公式,求出,代入不等式組,即求的值.

1)隨機變量的所有可能的取值為.

由題意可得:,,

,

隨機變量的分布列為

數(shù)學(xué)期望

2)①設(shè)該劃線分為,由,

,則,

由題意,,即,

,,

,,取

②由①討論及參考數(shù)據(jù)得

,

即每個學(xué)生生物統(tǒng)考成績不低于分的事件概率約為,

,

解得,

,

當(dāng)時,取得最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)當(dāng)時,證明:

i;

ii)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是我國大陸地區(qū)從2013年至2019年國內(nèi)生產(chǎn)總值(GDP)近似值(單位:萬億元人民幣)的數(shù)據(jù)表格:

年份

2013

2014

2015

2016

2017

2018

2019

年份代號

1

2

3

4

5

6

7

中國大陸地區(qū)GDP

(單位:萬億元人民幣)

為解釋變量,為預(yù)報變量,若以為回歸方程,則相關(guān)指數(shù);若以為回歸方程,則相關(guān)指數(shù)

(1)判斷哪一個更適宜作為國內(nèi)生產(chǎn)總值(GDP)近似值關(guān)于年份代號的回歸方程,并說明理由;

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),求出關(guān)于年份代號的回歸方程(系數(shù)精確到);

(3)黨的十九大報告中指出:從2020年到2035年,在全面建成小康社會的基礎(chǔ)上,再奮斗15年,基本實視社會主義現(xiàn)代化.若到2035年底我國人口增長為億人,假設(shè)到2035年世界主要中等發(fā)達國家的人均國民生產(chǎn)總值的頻率直方圖如圖所示.

以(2)的結(jié)論為依據(jù),預(yù)測我國在2035年底人均國民生產(chǎn)總值是否可以超過假設(shè)的2035年世界主要中等發(fā)達國家的人均國民生產(chǎn)總值平均數(shù)的估計值.

參考數(shù)據(jù):,

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:在回歸分析中

1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;

2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;

3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;

4)可用殘差圖判斷模型的擬合效果,殘差點比較均勻地落在水平的帶狀區(qū)域中,說明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說明模型的擬合精度越高.

以上結(jié)論中,正確的是(

A.1)(3B.2)(3C.1)(4D.3)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐中,頂點在底面的投影為的內(nèi)心,三個側(cè)面的面積分別為12,16,20,且底面面積為24,則三棱錐的內(nèi)切球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某精密儀器生產(chǎn)廠準(zhǔn)備購買,三種型號數(shù)控車床各一臺,已知這三臺車床均使用同一種易損件.在購進機器時,可以額外購買這種易損件作為備件,每個0.1萬元.在機器使用期間,如果備件不足再購買,則每個0.2萬元.現(xiàn)需要決策在購買機器時應(yīng)同時購買幾個易損件,為此搜集并整理了三種型號各120臺車床在一年使用期內(nèi)更換的易損零件數(shù),得到如下統(tǒng)計表:

每臺車床在一年中更換易損件的件數(shù)

5

6

7

頻數(shù)

型號

60

60

0

型號

30

60

30

型號

0

80

40

將調(diào)查的每種型號車床在一年中更換的易損件的頻率視為概率,每臺車床在易損件的更換上相互獨立.

(Ⅰ)求一年中,三種型號車床更換易損件的總數(shù)超過18件的概率;

(Ⅱ)以一年購買易損件所需總費用的數(shù)學(xué)期望為決策依據(jù),問精密儀器生產(chǎn)廠在購買車床的同時應(yīng)購買18件還是19件易損件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù)).

1)證明:當(dāng)時,;

2)當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖統(tǒng)計了截止到2019年年底中國電動汽車充電樁細分產(chǎn)品占比及保有量情況,關(guān)于這5次統(tǒng)計,下列說法正確的是(

A.私人類電動汽車充電樁保有量增長率最高的年份是2018

B.公共類電動汽車充電樁保有量的中位數(shù)是25.7萬臺

C.公共類電動汽車充電樁保有量的平均數(shù)為23.12萬臺

D.2017年開始,我國私人類電動汽車充電樁占比均超過50%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,且經(jīng)過點.

1)求橢圓的方程;

2)直線的斜率為,且與橢圓相交于,兩點(異于點),過的角平分線交橢圓于另一點.證明:直線與坐標(biāo)軸平行.

查看答案和解析>>

同步練習(xí)冊答案