設(shè)函數(shù)f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=
12
,數(shù)列{an}滿足f(1)=n2an(n∈N*),則數(shù)列{an}的通項an等于
 
分析:由f(0)=
1
2
,得到a1=
1
2
,由f(1)=n2an得到sn=n2an,這樣數(shù)列變?yōu)橐阎醉椇颓皀項和求數(shù)列的通項的問題,仿寫一個等式,兩式相減,合并同類項,約分化簡,得到數(shù)列連續(xù)兩項之間關(guān)系,疊乘得到結(jié)果.
解答:解:∵f(0)=
1
2
,
a1=
1
2
,
∵f(1)=n2an,
∴sn=n2an,
∴sn+1=(n+1)2an+1,
兩式相減得:an+1=(n+1)2an+1-n2an
an+1
an
=
n
n+2
,
用疊乘得到an=
1
(n+1)n

故答案為:an=
1
(n+1)n
點評:在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學方法.應用問題考查的重點是現(xiàn)實客觀事物的數(shù)學化,常需構(gòu)造數(shù)列模型,將現(xiàn)實問題轉(zhuǎn)化為數(shù)學問題來解決.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(理)設(shè)函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)為已知實常數(shù),x∈R.
下列關(guān)于函數(shù)f(x)的性質(zhì)判斷正確的命題的序號是
①②③④
①②③④

①若f(0)=f(
π
2
)=0
,則f(x)=0對任意實數(shù)x恒成立;
②若f(0)=0,則函數(shù)f(x)為奇函數(shù);
③若f(
π
2
)=0
,則函數(shù)f(x)為偶函數(shù);
④當f2(0)+f2(
π
2
)≠0
時,若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a1+a2x+a3x2+…+anxn-1,f(0)=
12
,數(shù)列{an}滿足f(1)=n2•an,則數(shù)列{an}的通項=
 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省鹽城市東臺市高二(上)期末數(shù)學試卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)=a1+a2x+a3x2+…+anxn-1,,數(shù)列{an}滿足f(1)=n2an(n∈N*),則數(shù)列{an}的通項an等于

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省高考數(shù)學仿真押題試卷(09)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=a1+a2x+a3x2+…+anxn-1,,數(shù)列{an}滿足f(1)=n2an(n∈N*),則數(shù)列{an}的通項an等于

查看答案和解析>>

同步練習冊答案