已知函數(shù)f(x)滿足:x≥4,則f(x)=(
12
)x
;當(dāng)x<4時f(x)=f(x+1),則f(2+log23)═
 
分析:判斷的范圍代入相應(yīng)的解析式求值即可
解答:解:∵2+log23<4,
∴f(2+log23)=f(3+log23)=f(log224)=(
1
2
)
log224
=
1
24

故應(yīng)填
1
24
點評:本題考查分段函數(shù)求值及指數(shù)對數(shù)去處性質(zhì),對答題者對基本運算規(guī)則掌握的熟練程度要求較高
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*時,求f(n)的表達式;
(2)設(shè)bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 滿足f(x+4)=x3+2,則f-1(1)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+f'(0)-e-x=-1,函數(shù)g(x)=-λlnf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)當(dāng)x≥0時,曲線y=f(x)在點M(t,f(t))的切線與x軸、y軸圍成的三角形面積為S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]時恒成立,求t的取值范圍;
(3)設(shè)函數(shù)h(x)=-lnf(x)-ln(x+m),常數(shù)m∈Z,且m>1,試判定函數(shù)h(x)在區(qū)間[e-m-m,e2m-m]內(nèi)的零點個數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=3,則
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•珠海二模)已知函數(shù)f(x)滿足:當(dāng)x≥1時,f(x)=f(x-1);當(dāng)x<1時,f(x)=2x,則f(log27)=( 。

查看答案和解析>>

同步練習(xí)冊答案