設(shè)二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)為f'(x),f′(0)>0,對于任意的實(shí)數(shù)x恒有f(x)≥0,則
f(-2)f′(0)
的最小值是
 
分析:先求導(dǎo),由f′(0)>0可得b>0,因?yàn)閷τ谌我鈱?shí)數(shù)x都有f(x)≥0,所以結(jié)合二次函數(shù)的圖象可得a>0且b2-4ac≤0,又因?yàn)?
f(-2)
f′(0)
=
4a-2b+c
b
=
4a+c
b
-2≥
4
ac
b
-2≥2-2=0
,利用均值不等式即可求解.
解答:解:∵f'(x)=2ax+b,
∴f'(0)=b>0;
∵對于任意實(shí)數(shù)x都有f(x)≥0,
∴a>0且b2-4ac≤0,
∴b2≤4ac,
∴c>0;
f(-2)
f′(0)
=
4a-2b+c
b
=
4a+c
b
-2≥
4
ac
b
-2≥2-2=0
,
當(dāng)4a=c時(shí)取等號.
故答案為:0.
點(diǎn)評:本題考查了求導(dǎo)公式,二次函數(shù)恒成立問題以及均值不等式,綜合性較強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實(shí)數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時(shí),f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求證:a>0,c>0;
(3)當(dāng)x∈(-1,1)時(shí),函數(shù)g(x)=f(x)-mx,m∈R是單調(diào)的,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1、x2滿足0<x1<x2
1
a
,且函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,則有( 。
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個(gè)零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當(dāng)x=1時(shí),f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在實(shí)數(shù)m,n,使x∈[m,n]時(shí),函數(shù)的值域也是[m,n]?若存在,則求出這樣的實(shí)數(shù)m,n;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有( 。

查看答案和解析>>

同步練習(xí)冊答案