分析 (Ⅰ)利用f(0)=0,即可求a的值;
(Ⅱ)x∈(0,$\sqrt{2}$],f′(x)=$\frac{-{x}^{2}+2}{({x}^{2}+2)^{2}}$>0,即可證明函數(shù)f(x)在(0,$\sqrt{2}$]上單調(diào)遞增.
解答 (Ⅰ)解:由題意,f(0)=$\frac{a}{2}$=0,∴a=0;
(Ⅱ)證明:f(x)=$\frac{x}{{x}^{2}+2}$,
∴x∈(0,$\sqrt{2}$],f′(x)=$\frac{-{x}^{2}+2}{({x}^{2}+2)^{2}}$>0,
∴函數(shù)f(x)在(0,$\sqrt{2}$]上單調(diào)遞增.
點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性,考查導(dǎo)數(shù)知識的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {-1,0,1} | C. | {-1,0,1,2} | D. | {-1,0,1,2,3,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1) | C. | (-1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sinα•cosα | B. | -sinα•cosα | C. | sin2α | D. | cos2α |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于點(diǎn)($\frac{7π}{12}$,0)對稱 | B. | 關(guān)于點(diǎn)(-$\frac{π}{12}$,0)對稱 | ||
C. | 關(guān)于直線x=-$\frac{π}{12}$對稱 | D. | 關(guān)于直線x=$\frac{7π}{12}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 1.5 | 3 | 5 | 6 | 7 | 8 | 9 | 14 | 27 |
lgx | 2a+b | a+b | a-c+1 | b+c | a+2b+c | 3(c-a) | 2(a+b) | b-a | 3(a+b) |
A. | lg$\frac{2}{21}$ | B. | $\frac{1}{2}$lg$\frac{3}{14}$ | C. | $\frac{1}{2}$lg$\frac{3}{7}$ | D. | lg$\frac{6}{7}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com