拋物線x2=ay(a≠0)的準線方程是
 
分析:根據(jù)拋物線方程求得p,進而根據(jù)拋物線的性質(zhì)求得其準線方程.
解答:解:根據(jù)拋物線方程可知p=
a
2
,焦點在y軸
∴準線方程是y=-
a
4

故答案為y=-
a
4
點評:本題主要考查了拋物線的簡單性質(zhì).屬基礎(chǔ)題,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線x2=ay(a>0)的焦點,O為坐標原點.點M為拋物線上的任一點,過點M作拋物線的切線交x軸于點N,設(shè)k1,k2分別為直線MO與直線NF的斜率,則k1k2=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=ay(a>0)的焦點恰好為雙曲線y2-x2=2的一個焦點,則a的值為(  )
A、1B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)斜率為2的直線l過拋物線x2=ay(a≠0)的焦點F,且和x軸交于點P,若△OPF(O為坐標原點)的面積為1,則實數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=ay(a>0)的準線l與y軸交于點P,若l繞點P以每秒
π
12
弧度的角速度按逆時針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于( 。

查看答案和解析>>

同步練習(xí)冊答案