設(shè)集合A={-3,0,1},B={t2-t+1}.若A∪B=A,則t=   
【答案】分析:A∪B=A等價于 B⊆A,轉(zhuǎn)化為t2-t+1∈A解決.
解答:解:由A∪B=A知B⊆A,∴t2-t+1=-3①t2-t+4=0,①無解
或t2-t+1=0②,②無解
或t2-t+1=1,t2-t=0,解得 t=0或t=1.
故答案為0或1.
點評:本題考查集合運算及基本關(guān)系,掌握好概念是基礎(chǔ).正確的轉(zhuǎn)化和計算是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={-3,0,1},B={t2-t+1}.若A∪B=A,則t=
0或1
0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={-3,0,1},B={t2-t+1}.若A∪B=A,則t=_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)集合A={-3,0,1},B={t2-t+1}.若A∪B=A,則t=______.

查看答案和解析>>

科目:高中數(shù)學 來源:《1.1 集合》2013年同步練習1(解析版) 題型:填空題

設(shè)集合A={-3,0,1},B={t2-t+1}.若A∪B=A,則t=   

查看答案和解析>>

同步練習冊答案