已知,命題,命題.⑴若命題為真命題,求實數(shù)的取值范圍;⑵若命題為真命題,命題為假命題,求實數(shù)的取值范圍.
(1),(2).
解析試題分析:(1)此小題即為恒成立問題,只需當(dāng)時,恒成立即可;(2)對于q為真,只要,而命題為真命題,命題為假命題反映的是命題p與命題q一個為真另一個為假,分類討論即可.
試題解析:因為命題,令,所以,根據(jù)題意,只要時,即可,也就是,即;⑵由⑴可知,當(dāng)命題p為真命題時,,命題q為真命題時,,解得,因為命題為真命題,命題為假命題,所以命題p與命題q一真一假,當(dāng)命題p為真,命題q為假時,,當(dāng)命題p為假,命題q為真時,,綜上所述:或.
考點:恒成立問題,復(fù)合命題的基本概念,解不等式組,分類討論的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,且.設(shè)命題:函數(shù)在(0,+∞)上單調(diào)遞減,命題:曲線與x軸交于不同的兩點,如果是假命題,是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題函數(shù)的定義域為R,命題不等式對一切正實數(shù)x均成立,如果命題為真,為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,設(shè):函數(shù)在上單調(diào)遞減;:函數(shù)在上為增函數(shù).
(1)若為真,為假,求實數(shù)的取值范圍;
(2)若“且”為假,“或”為真,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com