已知實數(shù)滿足,設(shè)函數(shù)
(1)當時,求的極小值;
(2)若函數(shù))的極小值點與的極小值點相同,求證:的極大值小于等于
(1);(2)見解析

試題分析:(1)把代入原函數(shù)先得解析式,再求導數(shù),列表判斷單調(diào)性求函數(shù)的極小值;(2)先分別求函數(shù)的導函數(shù),再分兩種情況討論,根據(jù)條件函數(shù)的極小值點相同分別求的極大值,從而進行判斷得結(jié)論
試題解析:(Ⅰ) 解: 當a=2時,f ′(x)=x2-3x+2=(x-1)(x-2)  
列表如下:
x
(-,1
1
(1,2)
2
(2,+
f ′(x)

0

0

f (x)
單調(diào)遞增
極大值
單調(diào)遞減
極小值
單調(diào)遞增
 
所以,f (x)極小值為f (2)=                         5分
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a)
g ′(x)=3x2+2bx-(2b+4)+
令p(x)=3x2+(2b+3)x-1,
(1)當 1<a≤2時,
f(x)的極小值點x=a,則g(x)的極小值點也為x=a,
所以pA=0,
即3a2+(2b+3)a-1=0,
即b=
此時g(x)極大值=g(1)=1+b-(2b+4)=-3-b
=-3+ =  
由于1<a≤2,
2-               10分
(2)當0<a<1時,
f(x)的極小值點x=1,則g(x)的極小值點為x=1,
由于p(x)=0有一正一負兩實根,不妨設(shè)x2<0<x1,
所以0<x1<1,
即p(1)=3+2b+3-1>0,
故b>-  
此時g(x)的極大值點x=x1,
有 g(x1)=x13+bx12-(2b+4)x1+lnx1
<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1  (x12-2x1<0)
<-(x12-2x1)-4x1+1
=-x12+x1+1
=-(x12+1+  (0<x1<1)

綜上所述,g(x)的極大值小于等于              14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù).的單調(diào)區(qū)間;
(2)設(shè)函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某地區(qū)注重生態(tài)環(huán)境建設(shè),每年用于改造生態(tài)環(huán)境總費用為億元,其中用于風景區(qū)改造為億元。該市決定建立生態(tài)環(huán)境改造投資方案,該方案要求同時具備下列三個條件:①每年用于風景區(qū)改造費用隨每年改造生態(tài)環(huán)境總費用增加而增加;②每年改造生態(tài)環(huán)境總費用至少億元,至多億元;③每年用于風景區(qū)改造費用不得低于每年改造生態(tài)環(huán)境總費用的15%,但不得高于每年改造生態(tài)環(huán)境總費用的25%.
,請你分析能否采用函數(shù)模型y=作為生態(tài)環(huán)境改造投資方案.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù);
(1)求證:函數(shù)上單調(diào)遞增;
(2)設(shè),若直線軸,求兩點間的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時,f(x)=lo(1-x),則函數(shù)f(x)在(1,2)上(  )
A.是增函數(shù),且f(x)<0
B.是增函數(shù),且f(x)>0
C.是減函數(shù),且f(x)<0
D.是減函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的單調(diào)增區(qū)間是                     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間上的最大值與最小值分別為,則          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞增區(qū)間是(   )
A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)

查看答案和解析>>

同步練習冊答案