【題目】設(shè) 為實數(shù),函數(shù) 的導(dǎo)函數(shù)為 ,且 是偶函數(shù), 則曲線: 在點(diǎn) 處的切線方程為( )
A.
B.

C.
D.

【答案】A
【解析】解:∵ , ∴f′(x)=3 +2ax+(a-3), ∵f′(x)是偶函數(shù), ∴3(-x)2+2a(-x)+(a-3)=3 +2ax+(a-3), 解得a=0, ∴f(x)= -3x,f′(x)=3 -3,則f(2)=2,k=f′(2)=9, 即切點(diǎn)為(2,2),切線的斜率為9, ∴切線方程為y-2=9(x-2),即9x-y-16=0.
故選A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解導(dǎo)數(shù)的幾何意義(通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時,函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即),還要掌握基本求導(dǎo)法則(若兩個函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)a,b,c,d滿足 = =1,則(a﹣c)2+(b﹣d)2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={3a,3},B={a2+2a,4},A∩B={3},則A∪B等于(
A.{3,5}
B.{3,4}
C.{﹣9,3}
D.{﹣9,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府在該地一水庫上建造一座水電站,用泄流水量發(fā)電,如圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知X∈[0,120],歷年中日泄流量在區(qū)間[30,60)的年平均天數(shù)為156天,一年按364天計.
(1)請把頻率直方圖補(bǔ)充完整;
(2)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬立方米的日泄流量才能夠運(yùn)行一臺發(fā)電機(jī),如60≤X<90時才夠運(yùn)行兩臺發(fā)電機(jī),若運(yùn)行一臺發(fā)電機(jī),每天可獲利潤4000元,若不運(yùn)行,則該臺發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù).問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺發(fā)電機(jī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,且2a1=d,2an=a2n﹣1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一般情況下,城市主干道上的車流速度 (單位:千米/小時)是車流密度 (單位:輛/千米)的函數(shù)。當(dāng)主干道上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時。研究表明:當(dāng) 時,車流速度 是車流密度 的一次函數(shù)。
(1)當(dāng) 時,求函數(shù) 的表達(dá)式;
(2)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過主干道上某觀測點(diǎn)的車輛數(shù),單位:輛/小時) 可以達(dá)到最大?并求出最大值。(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,有f(x)>f'(x),且f(x)+2017為奇函數(shù),則不等式f(x)+2017ex<0的解集是(
A.(﹣∞,0)
B.(0,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex , g(x)=lnx,若f(t)=g(s),則當(dāng)s﹣t取得最小值時,f(t)所在區(qū)間是(
A.(ln2,1)
B.( ,ln2)
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,面積最大的是(
A.8
B.
C.12
D.16

查看答案和解析>>

同步練習(xí)冊答案