(普通班)已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.
(實(shí)驗(yàn)班)已知函數(shù)R).
(Ⅰ)若,求曲線在點(diǎn)處的的切線方程;
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(實(shí)驗(yàn)班)(Ⅰ)解:當(dāng)時(shí),.
,
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:.
(Ⅱ)解法一:由題意得,即.
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052123575018753163/SYS201205220000053125964856_DA.files/image008.png">,所以恒成立,
故在上單調(diào)遞增,
要使恒成立,則,解得.
解法二:
(1)當(dāng)時(shí),在上恒成立,故在上單調(diào)遞增,
即.
(2)當(dāng)時(shí),令,對(duì)稱軸,
則在上單調(diào)遞增,又
① 當(dāng),即時(shí),在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當(dāng)時(shí),, 不合題意,舍去
綜上所述:
20.(普通班)解:(1)∵焦距為4,∴ c=2………………………………………………1分
又∵的離心率為……………………………… 2分
∴,∴a=,b=2………………………… 4分
∴標(biāo)準(zhǔn)方程為………………………………………6分
(2)設(shè)直線l方程:y=kx+1,A(x1,y1),B(x2,y2),
由得……………………7分
∴x1+x2=,x1x2=
由(1)知右焦點(diǎn)F坐標(biāo)為(2,0),∵右焦點(diǎn)F在圓內(nèi)部,∴<0…………8分
∴(x1 -2)(x2-2)+ y1y2<0
即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…………………… 9分
∴<0…………… 11分
∴k<……… 12分
經(jīng)檢驗(yàn)得k<時(shí),直線l與橢圓相交,∴直線l的斜率k的范圍為(-∞,)……13分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期第一次月考文科數(shù)學(xué)試卷 題型:解答題
(普通班)設(shè)函數(shù),其中常數(shù);(1)討論的單調(diào)性;(2)若,當(dāng),恒成立,求的取值范圍。
(實(shí)驗(yàn)班)已知橢圓(0<b<2)的離心率等于拋物線(p>0).
(1)若拋物線的焦點(diǎn)F在橢圓的頂點(diǎn)上,求橢圓和拋物線的方程;
(2)若拋物線的焦點(diǎn)F為,在拋物線上是否存在點(diǎn)P,使得過點(diǎn)P的切線與橢圓相交于A,B兩點(diǎn),且滿足?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com