【題目】某車(chē)間生產(chǎn)甲、乙兩種產(chǎn)品,已知制造一件甲產(chǎn)品需要種元件5個(gè),種元件2個(gè),制造一件乙種產(chǎn)品需要種元件3個(gè),種元件3個(gè),現(xiàn)在只有種元件180個(gè),種元件135個(gè),每件甲產(chǎn)品可獲利潤(rùn)20元,每件乙產(chǎn)品可獲利潤(rùn)15元,試問(wèn)在這種條件下,應(yīng)如何安排生產(chǎn)計(jì)劃才能得到最大利潤(rùn)?
【答案】甲產(chǎn)品生產(chǎn)30件,乙產(chǎn)品生產(chǎn)15件的條件下,才能得到最大利潤(rùn)825元.
【解析】
畫(huà)出圖表,得到約束條件,列出目標(biāo)函數(shù),利用線性規(guī)劃知識(shí)求解即可.
依題意有如下表格:
利潤(rùn) | |||
甲產(chǎn)品 | 5 | 2 | 20(元/件) |
乙產(chǎn)品 | 3 | 3 | 15(元/件) |
設(shè)生產(chǎn)甲產(chǎn)品件,設(shè)生產(chǎn)乙產(chǎn)品件,
故有如下不等式組:,利潤(rùn),如圖:
由,解得,
,經(jīng)過(guò)可行域的時(shí),取得最大值:此時(shí),
故在甲產(chǎn)品生產(chǎn)30件,乙產(chǎn)品生產(chǎn)15件的條件下,才能得到最大利潤(rùn)825元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),連結(jié),當(dāng)的面積最大值時(shí),( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為進(jìn)行愛(ài)國(guó)主義教育,在全校組織了一次有關(guān)釣魚(yú)島歷史知識(shí)的競(jìng)賽.現(xiàn)有甲、乙兩隊(duì)參加釣魚(yú)島知識(shí)競(jìng)賽,每隊(duì)3人,規(guī)定每人回答一個(gè)問(wèn)題,答對(duì)為本隊(duì)贏得1分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為,且各人回答正確與否相互之間沒(méi)有影響,用ξ表示甲隊(duì)的總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)用表示“甲、乙兩個(gè)隊(duì)總得分之和等于3”這一事件,用表示“甲隊(duì)總得分大于乙隊(duì)總得分” 這一事件,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(b為常數(shù))
(1)若b=1,求函數(shù)H(x)=f(x)﹣g(x)圖象在x=1處的切線方程;
(2)若b≥2,對(duì)任意x1,x2∈[1,2],且x1≠x2,都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求實(shí)數(shù)b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小軍的微信朋友圈參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了40位微信好友(女20人,男20人),統(tǒng)計(jì)其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別(說(shuō)明:a~b表示大于等于a,小于等于b)
A(0~2000步)1人, B(2001-5000步)2人, C(5001~8000步)3人,
D(8001-10000步)6人, E(10001步及以上)8人
若某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)認(rèn)定為“健康型”否則被系統(tǒng)認(rèn)定為“進(jìn)步型”.
(I)訪根據(jù)選取的樣本數(shù)據(jù)完成下面的2×2列聯(lián)表,并根據(jù)此判斷能否有95%以上的把握認(rèn)為“認(rèn)定類(lèi)型”與“性別”有關(guān)?
健康型 | 進(jìn)步型 | 總計(jì) | |
男 | 20 | ||
女 | 20 | ||
總計(jì) | 40 |
(Ⅱ)如果從小軍的40位好友中該天走路步數(shù)超過(guò)10000的人中隨機(jī)抽取3人,設(shè)抽到女性好友X人,求X的分布列和數(shù)學(xué)期望.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線的焦點(diǎn)為,為拋物線上一點(diǎn)(在軸上方),,點(diǎn)到軸的距離為4.
(1)求拋物線方程及點(diǎn)的坐標(biāo);
(2)是否存在軸上的一個(gè)點(diǎn),過(guò)點(diǎn)有兩條直線,滿足,交拋物線于兩點(diǎn).與拋物線相切于點(diǎn)(不為坐標(biāo)原點(diǎn)),有成立,若存在,求出點(diǎn)的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如題所示的平面圖形中,為矩形,,為線段的中點(diǎn),點(diǎn)是以為圓心,為直徑的半圓上任一點(diǎn)(不與重合),以為折痕,將半圓所在平面折起,使平面平面,如圖2,為線段的中點(diǎn).
(1)證明:.
(2)若銳二面角的大小為,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com