(本題滿分16分)(Ⅰ)試比較的大。
(Ⅱ)試比較nn+1與(n+1)n(n∈N+)的大小,根據(jù)(Ⅰ)的結(jié)果猜測一個一般性結(jié)論,并加以證明.
解:(Ⅰ)由于,,則;
又,,則;
所以. …………………………………………6分
(Ⅱ)當(dāng)n=1,2時,有nn+1<(n+1)n.………………………………………8分
當(dāng)n≥3時,有nn+!>(n+1)n. 證明如下:
令,.
又.
∴an+1>an即數(shù)列{an}是一個單調(diào)遞增數(shù)列.
則an>an-1>…>a3>1
∴即nn+1>(n+1)n. ……………………………………16分
另證:構(gòu)造函數(shù)f(x)=(x≥3),f(x)==,
∴f(x)=在[3,+∞為遞減函數(shù),則f(n)>f(n+1),
即,,∴,
即nn+1>(n+1)n(n≥3時結(jié)論成立).
解析
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com