(2012•遼寧)已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為
3
3
3
3
分析:先利用正三棱錐的特點(diǎn),將球的內(nèi)接三棱錐問題轉(zhuǎn)化為球的內(nèi)接正方體問題,從而將所求距離轉(zhuǎn)化為正方體中,中心到截面的距離問題,利用等體積法可實(shí)現(xiàn)此計(jì)算
解答:解:∵正三棱錐P-ABC,PA,PB,PC兩兩垂直,
∴此正三棱錐的外接球即以PA,PB,PC為三邊的正方體的外接圓O,
∵圓O的半徑為
3
,
∴正方體的邊長為2,即PA=PB=PC=2
球心到截面ABC的距離即正方體中心到截面ABC的距離
設(shè)P到截面ABC的距離為h,則正三棱錐P-ABC的體積V=
1
3
S△ABC×h=
1
3
S△PAB×PC=
1
3
×
1
2
×2×2×2=2
3

△ABC為邊長為2
2
的正三角形,S△ABC=
1
2
×
3
4
×(2
2
)
2

∴h=
V
S△ABC
=
1
3
×
1
2
×2×2×2
1
2
×
3
4
×(2
2
)
2
=
2
3
3

∴正方體中心O到截面ABC的距離為
3
-
2
3
3
=
3
3

故答案為
3
3
點(diǎn)評:本題主要考球的內(nèi)接三棱錐和內(nèi)接正方體間的關(guān)系及其相互轉(zhuǎn)化,棱柱的幾何特征,球的幾何特征,點(diǎn)到面的距離問題的解決技巧,有一定難度,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)已知sinα-cosα=
2
,α∈(0,π)
,則tanα=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)已知P,Q為拋物線x2=2y上兩點(diǎn),點(diǎn)P,Q的橫坐標(biāo)分別為4,-2,過P,Q分別作拋物線的切線,兩切線交于點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)已知命題p:?x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,則¬p是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)已知等比數(shù)列{an}為遞增數(shù)列,且
a
2
5
=a10,2(an+an+2)=5an+1
,則數(shù)列an的通項(xiàng)公式an=
2n
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•遼寧)已知雙曲線x2-y2=1,點(diǎn)F1,F(xiàn)2為其兩個(gè)焦點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),若PF1⊥PF2,則|PF1|+|PF2|的值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案