精英家教網 > 高中數學 > 題目詳情
函數f(x)=log4x+x-7的零點所在大致區(qū)間是( )
A.(1,2)
B.(3,4)
C.(5,6)
D.(6,7)
【答案】分析:根據零點判定定理:對于在[a,b]上連續(xù)函數f(x),若f(a)f(b)<0則在[a,b]一定存在x使得f(x)=0,即函數f(x)在[a,b]上一定有零點,對選項進行逐一驗證即可.
解答:解:∵f(x)=log4x+x-7
∴f(1)f(2)=-6(log42-5)>0∴(1,2)不一定有零點,排除A
f(3)f(4)=(log43+3-7)(log44+4-7)>0 不一定有零點,排除B
f(5)f(6)=(log45+5-7)(log46+6-7)<0  根據零點的判定定理一定有零點,故零點在(5,6)
故選C.
點評:本題主要考查函數零點的判定定理的應用.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

5、設函數f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數,則實數a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設有三個命題:“①0<
1
2
<1.②函數f(x)=log 
1
2
x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•茂名二模)設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調函數.現給出下列命題:
①函數f(x)=log 
1
2
x為(0,+∞)上的高調函數;
②函數f(x)=sinx為R上的高調函數;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上的高調函數,那么實數m的取值范圍是[2,+∞);
其中正確的命題的個數是(  )

查看答案和解析>>

同步練習冊答案