【題目】(A)在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程為 (為參數(shù)), 是曲線上的動點, 為線段的中點,設點的軌跡為曲線.

(1)求的坐標方程;

(2)若射線與曲線異于極點的交點為,與曲線異于極點的交點為,求.

(B)設函數(shù).

(1)當時,求不等式的解集;

(2)對任意, 不等式恒成立,求實數(shù)的取值范圍.

【答案】(A) (1) (為參數(shù)),(2)

(B) (1) ;(2) .

【解析】試題分析:

A

(1)結合題意可得的極坐標方程是 (為參數(shù)),

(2)聯(lián)立極坐標方程與參數(shù)方程,結合極徑的定義可得

B

(1)由題意零點分段可得不等式的解集是

(2)由恒成立的條件得到關于實數(shù)a的不等式組,求解不等式可得實數(shù)的取值范圍是.

試題解析:

(A)解:(1)設,則由條件知,由于點在曲線上,

所以,即,

從而的參數(shù)方程為 (為參數(shù)),

化為普通方程

所以曲線后得到

極坐標方程為.

(2)曲線的極坐標方程為,

時,代入曲線的極坐標方程,得,

,解得,

所以射線的交點的極徑為,

曲線的極坐標方程為.

同理可得射線的交點的極徑為.

所以.

(B)解:(1)當時,

解得.

(2)因為.

所以只需,解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】4月16日摩拜單車進駐大連市旅順口區(qū),綠色出行引領時尚,旅順口區(qū)對市民進行“經(jīng)常使用共享單車與年齡關系”的調查統(tǒng)計,若將單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,抽取一個容量為200的樣本,將一周內使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”。使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知“經(jīng)常使用單車用戶”有120人,其中是“年輕人”,已知“不常使用單車用戶”中有是“年輕人”.

(1)請你根據(jù)已知的數(shù)據(jù),填寫下列列聯(lián)表:

年輕人

非年輕人

合計

經(jīng)常使用單車用戶

不常使用單車用戶

合計

(2)請根據(jù)(1)中的列聯(lián)表,計算值并判斷能否有的把握認為經(jīng)常使用共享單車與年齡有關?

(附:

時,有的把握說事件有關;當時,有的把握說事件有關;當時,認為事件是無關的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(1)當時,求曲線在點處的切線方程;

(2)討論函數(shù)的單調性;

(3)當,且時證明不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;

(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?

(參考公式:回歸直線方程為,其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,部分對應值如下表,又知的導函數(shù)的圖象如下圖所示:

0

4

5

1

2

2

1

則下列關于的命題:

①函數(shù)的極大值點為2;

②函數(shù)上是減函數(shù);

③如果當時, 的最大值是2,那么的最大值為4;

④當,函數(shù)有4個零點.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的單調區(qū)間;

(2)設, 是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍;

(3)設函數(shù)有兩個極值點, ,且,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (為實常數(shù)).

(1)若, ,求的單調區(qū)間;

(2)若,且,求函數(shù)上的最小值及相應的值;

(3)設,若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求函數(shù)的單調區(qū)間;

(2)若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在研究某種藥物對“H1N11”病毒的治療效果時,進行動物試驗,得到以下數(shù)據(jù),對146只動物服用藥物,其中101只動物存活,45只動物死亡;對照組144只動物進行常規(guī)治療,其中124只動物存活,20只動物死亡.

(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表;

(2)試問該種藥物對治療“H1N1”病毒是否有效?

查看答案和解析>>

同步練習冊答案