已知,且ab的夾角=150°,則_______

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山一模)已知函數(shù)f(x)=ax+bsinx,當x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設直線l:y=g(x),曲線S:y=f(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(x)≥f(x).則稱直線l為曲線S的“上夾線”.試證明:直線l:y=x+2為曲線S:y=ax+bsinx“上夾線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當x=
π
3
時,f(x)取得極小值
π
3
-
3

(1)求a,b的值;
(2)設直線l:y=g(x),曲線S:y=F(x).若直線l與曲線S同時滿足下列兩個條件:
①直線l與曲線S相切且至少有兩個切點;
②對任意x∈R都有g(x)≥F(x).則稱直線l為曲線S的“上夾線”.
試證明:直線l:y=x+2是曲線S:y=ax+bsinx的“上夾線”.
(3)記h(x)=
1
8
[5x-f(x)]
,設x1是方程h(x)-x=0的實數(shù)根,若對于h(x)定義域中任意的x2、x3,當|x2-x1|<1,且|x3-x1|<1時,問是否存在一個最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請求出M的值;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:重難點手冊 高中數(shù)學·必修4(配人教A版新課標) 人教A版新課標 題型:044

已知向量a,b滿足關系式|a-λb|=|λab|(λ>0),且a=(cosα,sinα),b=(-,).

(1)試用λ表示向量ab的數(shù)量積;

(2)求ab所夾銳角的最大值,并求此時λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線. 若直線l與曲線S同時滿足下列兩個條件:

①直線l與曲線S相切且至少有兩個切點;

②對任意xR都有. 則稱直線l為曲線S的“上夾線”.

(1) 類比“上夾線”的定義,給出“下夾線”的定義;

(2) 已知函數(shù)取得極小值,求a,b的值;

(3) 證明:直線是(2)中曲線的“上夾線”。

查看答案和解析>>

同步練習冊答案