16.已知集合U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.若A∩B={4},且B⊆U,則a等于( 。
A.2或$\frac{5}{2}$B.±2C.2D.-2

分析 通過解方程x2-7x+12=0求得集合A.然后由集合的互異性來求a的值.

解答 解:∵A=A={x|x2-7x+12=0}={3,4},A∩B={4},
∴4∈B.
當(dāng)a2=4時,得a=±2,
若a=2,則2a-1=3,
∴A∩B={3,4},不合題意;
若a=-2,則2a-1=-5,
∴A∩B={4},符合題意;
當(dāng)2a-1=4時,得$a=\frac{5}{2}$,B?U,不合題意.
綜上,a的值為-2.
故選:D.

點評 本題考查的知識點是集合的包含關(guān)系判斷及應(yīng)用,集合關(guān)系中的參數(shù)問題,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)是定義在(0,+∞)上的函數(shù),對定義域內(nèi)的任意x,y都滿足f(xy)=f(x)+f(y),且x>1時,f(x)>0.
(1)判斷f(x)在(0,+∞)上的單調(diào)性并證明;
(2)若f(2)=1,解不等式f(x)+f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若一系列的函數(shù)解析式相同、值域相同,但定義域不同,則稱這些函數(shù)為“同型異構(gòu)”函數(shù).那么函數(shù)解析式為y=-x2,x∈R,值域為{-1,-9}的“同型異構(gòu)”函數(shù)有( 。
A.10個B.9個C.8個D.7個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.“a>1”是“函數(shù)f(x)=(a2x在定義域內(nèi)是增函數(shù)”的(  )
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={x|(x+1)(2-x)>0},集合B={x|1<x<3},則A∪B=( 。
A.(-1,3)B.(-1,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線C的方程為x2-15y2=15.其漸近線方程為y=±$\frac{\sqrt{15}}{15}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某高!督y(tǒng)計初步》課程的教師隨機調(diào)查了選修該課的學(xué)生的一些情況,具體數(shù)據(jù)如表1:為了判斷主修統(tǒng)計專業(yè)是否與性別有關(guān),根據(jù)表中數(shù)據(jù),得K2的觀察值為k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,所以判斷主修統(tǒng)計專業(yè)與性別有關(guān),那么這種判斷出錯的可能性不超過( 。
表1非統(tǒng)計專業(yè)統(tǒng)計專業(yè)
1310
720
P(K2≥k00.050.0250.010.005
k03.8415.0246.6357.879
A.5%B.2.5%C.1%D.0.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,內(nèi)角A,B,C對應(yīng)的邊長分別為a,b,c,已知$\overrightarrow{m}$=(c,a+b),$\overrightarrow{n}$=(a-b,acosB-$\frac{1}{2}$b),$\overrightarrow{m}$∥$\overrightarrow{n}$.
(I)求角A;
(II)若a=$\sqrt{3}$,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若實數(shù) x,y滿足 (x-2)2+y2=1,則$\frac{y}{x}$的最大值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案