已知雙曲線的兩個焦點分別為,則滿足△的周長為的動點的軌跡方程為 (   )

A.       B.       C. D.

 

【答案】

C

【解析】

試題分析:根據(jù)已知雙曲線方程,運用公式可得它的兩個焦點分別為F1(0,-)、F2(0,).再根據(jù)△PF1F2的周長為6+2,結(jié)合橢圓的定義得到點P的軌跡是以F1、F2為焦點的橢圓,因為三角形三頂點不能共線,所以上、下頂點除外.由橢圓的定義求得橢圓的長半軸、短半軸分別為3和2.因此可得橢圓的標(biāo)準(zhǔn)方程,得到正確選項.

因為雙曲線,因此可知其兩個焦點分別為F1(0,-)、F2(0,).

因為△的周長為,那么說明了動點的軌跡是以、為焦點的橢圓,則由橢圓的定義得到,長軸長為6,長半軸為3,短半軸長為2,故可知P的軌跡方程為,同時去掉上下頂點。選C.

考點:本試題考查了一個軌跡問題的知識點。

點評:該試題著重考查了橢圓、雙曲線等圓錐曲線的標(biāo)準(zhǔn)方程,以及簡單的軌跡方程求法等知識點,屬于中檔題.那么求軌跡方程 方法一般是考慮定義法和直接法來求解的比較多。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)、F2
5
,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,則該雙曲線的方程是(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點是橢圓
x2
100
+
y2
64
=1
的兩個頂點,雙曲線的兩條準(zhǔn)線經(jīng)過橢圓的兩個焦點,則此雙曲線的方程是( 。
A、
x2
60
-
y2
30
=1
B、
x2
50
-
y2
40
=1
C、
x2
60
-
y2
40
=1
D、
x2
50
-
y2
30
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為橢圓
x2
16
+
y2
7
=1
的長軸的端點,其準(zhǔn)線過橢圓的焦點,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,P是此雙曲線上的一點,且PF1⊥PF2,|PF1|•|PF2|=2,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的兩個焦點F1(-
10
,0),F(xiàn)2
10
,0),M是此雙曲線上的一點,|
MF1
|-|
MF2
|=6,則雙曲線的方程為
x2
9
-y2=1
x2
9
-y2=1

查看答案和解析>>

同步練習(xí)冊答案