已知α:0≤x<3,β:-1<x≤4,γ:2x2+mx-1<0.
(1)若α是γ的充分條件,求m的取值范圍.
(2)若β是γ的必要條件,求m的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:(1)根據(jù)充分條件的定義建立條件關(guān)系即可得到結(jié)論.
(2)根據(jù)必要條件的定義建立條件關(guān)系即可得到結(jié)論.
解答: 解:(1)若α是γ的充分條件,將當(dāng)0≤x<3時,2x2+mx-1<0成立,
設(shè)f(x)=2x2+mx-1,
f(0)=-1<0
f(3)≤0
,即18+3m-1<0,即m
17
3

(2)若β是γ的必要條件,
則2x2+mx-1<0時,-1<x≤4成立.
即{x|2x2+mx-1<0}⊆{x|-1<x≤4},
∵△=m2+8>0,
∴滿足
f(-1)=2-1-m>0
f(4)=32+4m-1≥0
,
m<1
m≥-
31
4
,
-
31
4
≤m<1
點評:本題主要考查充分條件和必要條件的應(yīng)用,將不等式轉(zhuǎn)化為函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方程2log0.5(x-2k)-log0.5(x2-4)=0沒有實數(shù)解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+1
1-ax
(a>0且a≠0),函數(shù)g(x)與f(x)的圖象關(guān)于y=x對稱.
(1)求g(x)的解析式;
(2)判斷g(x)在(1,+∞)內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,且橢圓Γ過點A(2,
2
).
(1)求橢圓Γ的方程;
(2)設(shè)P、Q為橢圓Γ上關(guān)于y軸對稱的兩個不同的動點,求
AP
AQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(aπx)的圖象中至少有一個最高點和一個最低點同時在圓x2+y2=3的內(nèi)部,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≥
π
2
,x∈R)的最大值是3,其相鄰兩條對稱軸間的距離為
π
2

(1)求f(x)的表達式;
(2)求函數(shù)y=f(x)+
3
sin2x的最大值,并求出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(α-3π)cos(2π-α)sin(-α+
2
)
cos(-π-α)sin(-π-α)

(1)化簡f(α);
(2)若α=-
31π
3
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

n個人互相傳球,由甲開始發(fā)球,經(jīng)過m次傳球后,球仍回到甲的手中,一共有多少種傳法?(m≥2,n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合D是滿足方程y=x2的有序?qū)崝?shù)對(x,y)的集合,則-1
 
D,(-1,1)
 
D.(填“∈”或“∉”).

查看答案和解析>>

同步練習(xí)冊答案