集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:

(1)函數(shù)f(x)的定義域是[0,+∞);

(2)函數(shù)f(x)的值域是[-2,4);

(3)函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)是否屬于集合A?并簡要說明理由;

(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式是否對于任意的x≥0恒成立?若成立,請給出證明;若不成立,請說明理由.

答案:
解析:

  解:(1)函數(shù)不屬于集合A.

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4128/0019/ca0503d63a1cbe8f98eb5e1b89706946/C/Image71.gif" width=37 height=24>的值域是  3分

  在集合A中.

  因?yàn)椋孩俸瘮?shù)的定義域是;②的值域是[-2,4);

 、酆瘮(shù)上是增函數(shù)  7分

  (2)

  不等式對任意恒成立  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)
f2(x)=4-6•(
1
2
)x(x≥0)
是否屬于集合A?并簡要說明理由;
(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意的x≥0恒成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)f (x)組成的:①函數(shù)f (x)的定義域是[0,+∞);②函數(shù)f(x)的值域是[-2,4);③函數(shù)f(x)在[0,+∞)上是增函數(shù).試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)
,及f2(x)=4-6•(
1
2
)x(x≥0)
是否屬于集合A,并簡要說明理由;
(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意的x≥0總成立?若不成立,說明理由?若成立,請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),分別探究下列小題:
(1)判斷函數(shù)f1(x)=
x
-2(x≥0)及f2(x)=4-6•(
1
2
x(x≥0)是否屬于集合A?并簡要說明理由;
(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意的x≥0恒成立?若不成立,為什么?若成立,請說明你的結(jié)論.
(3)g(x)=x+2a f1(x)求g(x)的最小值用a表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由具備下列性質(zhì)的函數(shù)組成的:

(1) 函數(shù)的定義域是;     

(2) 函數(shù)的值域是

(3) 函數(shù)上是增函數(shù).試分別探究下列兩小題:

(Ⅰ)判斷函數(shù),及是否屬于集合A?并簡要說明理由.

(Ⅱ)對于(I)中你認(rèn)為屬于集合A的函數(shù),不等式,是否對于任意的總成立?若不成立,為什么?若成立,請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北岳中高中一輪復(fù)習(xí)理科數(shù)學(xué)滾動測試三解析版 題型:解答題

(12分)集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:

①函數(shù)f(x)的定義域是[0,+∞);

②函數(shù)f(x)的值域是[-2,4);

③函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否屬于集合A?并簡要說明理由;

(2)對于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對于任意的x≥0恒成立?若不成立,為什么?若成立,請說明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊答案