若方程
x2
2-k
+
y2
k-1
=1
表示的圖形是雙曲線,則k的取值范圍為______.
由題意知(2-k)(k-1)<0,
解得k<1或者k>2.
故答案為:{k|k<1或k>2}.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1,點O為坐標原點,一條直線l:y=kx+b(b>0)與圓O相切并與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(Ⅰ)設b=f(k),求f(k)的表達式,并注明k的取值范圍;
(Ⅱ)若
OA
OB
=
2
3
,求直線l的方程;
(Ⅲ)若
OA
OB
=m(
2
3
≤m≤
3
4
),求△OAB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣元二模)已知圓O:x2+y2=1,點O為坐標原點,一條直線l:y=kx+b(b>0)與圓O相切并與橢圓
x2
2
+y2=1
交于不同的兩點A、B.
(1)設b=f(k),求f(k)的表達式;
(2)若
OA
OB
=
2
3
,求直線l的方程;
(3)若
OA
OB
=m(
2
3
≤m≤
3
4
)
,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以動點P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點,且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個不同點,L與橢圓E交于P、Q兩個不同點,設AB中點為R,PQ中點為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•廣州一模)已知n∈N*,設函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調區(qū)間;
(2)是否存在整數(shù)t,對于任意n∈N*,關于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實數(shù)解?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案