圖中的三角形稱為謝賓斯基(Sierpinski)三角形.在下圖中,將第1個三角形的三邊中點為頂點的三角形著色,將第k(k∈N*)個圖形中的每個未著色三角形的三邊中點為頂點的三角形著色,得到第k+1個圖形,這樣這些圖形中著色三角形的個數(shù)依次構(gòu)成一個數(shù)列{an},則數(shù)列{an}的通項公式為   
【答案】分析:由題意可得出此數(shù)列是以1為首項,且滿足的數(shù)列,由累加法即可求出數(shù)列的通項公式
解答:解:由題意可得
當(dāng)n≥2時,
故答案為 
點評:本題考查歸納推理,考查了識圖的能力及歸納推理的能力,解題的關(guān)鍵是得出各個三角形中著色三角形的數(shù)量關(guān)系即遞推關(guān)系,本題是歸納考查的常規(guī)題,典型題,也是高考的熱點題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圖中的三角形稱為謝賓斯基(Sierpinski)三角形.在下圖4個三角形中,著色三角形的個數(shù)依次構(gòu)成一個數(shù)列的前4項,則這個數(shù)列的一個通項公式為
an=
3n-1
2
an=
3n-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的三角形稱為謝賓斯基(Sierpinski)三角形.在下圖中,將第1個三角形的三邊中點為頂點的三角形著色,將第k(k∈N*)個圖形中的每個未著色三角形的三邊中點為頂點的三角形著色,得到第k+1個圖形,這樣這些圖形中著色三角形的個數(shù)依次構(gòu)成一個數(shù)列{an},則數(shù)列{an}的通項公式為
an=
3n-1
2
an=
3n-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的三角形稱為謝賓斯基(Sierpinski)三角形.在下圖中,將第1個三角形的三邊中點為頂點的三角形著色,將第k(k∈N*)個圖形中的每個未著色三角形的三邊中點為頂點的三角形著色,得到第k+1個圖形,這樣這些圖形中著色三角形的個數(shù)依次構(gòu)成一個數(shù)列{an},則數(shù)列{an}的通項公式為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

圖中的三角形稱為謝賓斯基(Sierpinski)三角形.在下圖4個三角形中,著色三角形的個數(shù)依次構(gòu)成一個數(shù)列的前4項,則這個數(shù)列的一個通項公式為   

查看答案和解析>>

同步練習(xí)冊答案