已知:如圖,α∥β,異面直線AB、CD和平面α、β分別交于A、B、C、D四點(diǎn),E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),

求證:(1)E、F、G、H共面;

(2)面EFGH∥平面α.

答案:
解析:

  證明:(1)∵E、H分別是AB、DA的中點(diǎn),∴EHBD.同理FGBD.∴FGEH.∴四邊形EFGH是平行四邊形,即E、F、H、G共面.

  (2)平面ABD和平面α有一個(gè)公共點(diǎn)A,設(shè)兩平面交于過點(diǎn)A的直線A∴α∥β,∴A∥BD.又∵BD∥EH,∴EH∥BD∥A.∴EH∥平面α,EH∥平面β,同理FG∥平面α,F(xiàn)G∥平面β.

  ∴平面EFHG∥平面α∥平面β.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水.連噴頭在內(nèi),柱高0.8m.水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示.
精英家教網(wǎng)
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是 y=-x2+2x+
45

(1)噴出的水流距水面的最大高度是多少?
(2)如果不計(jì)其他因素,那么水池半徑至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
(3)若水流噴出的拋物線形狀與(2)相同,噴頭距水面0.35米,水池的面積為12.25π平方米,要使水流最遠(yuǎn)落點(diǎn)恰好落到水池邊緣,此時(shí)水流最大高度達(dá)到多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-1:幾何證明選講】
已知,如圖,AB是⊙O的直徑,AC切⊙O于點(diǎn)A,AC=AB,CO交⊙O于點(diǎn)P,CO的延長線交⊙O于點(diǎn)F,BP的延長線交AC于點(diǎn)E.
(1)求證:FA∥BE;
(2)求證:
AP
PC
=
FA
AB
;
(3)若⊙O的直徑AB=2,求tan∠PFA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖所示,以梯形ABCD的對角線AC及腰AD為鄰邊作平行四邊形ACED,連接EB,DC的延長線交BE于F.求證:EF=BF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大豐市一模)已知:如圖,M是線段BC的中點(diǎn),BC=4,分別以MB、MC為邊在線段BC的同側(cè)作等邊△BAM、等邊△MCD,連接AD.
(1)求證:四邊形ABCD是等腰梯形;
(2)將△MDC繞點(diǎn)M逆時(shí)針方向旋轉(zhuǎn)α(60°<α<120°),得到△MD′C′,MD′交AB于點(diǎn)E,MC′交AD于點(diǎn)F,連接EF.
①求證:EF∥D′C′;
②△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計(jì)算出△AEF周長的最小值.

查看答案和解析>>

同步練習(xí)冊答案