精英家教網 > 高中數學 > 題目詳情

(本小題滿分14分)已知中心在原點的雙曲線C的右焦點為(2, 0),實軸長為

(Ⅰ)求雙曲線C的方程;()

(Ⅱ)若直線l:與雙曲線C的左支交于A、B兩個不同點,求的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,線段AB的垂直平分線l0與y軸交于M(0,b),求b的取值范圍.

【解】 (Ⅰ)設雙曲線方程為-=1(a>0,b>0),

由已知,得a=,c=2,b2=c2-a2=1,故雙曲線方程為-y2=1. ……2分

20090318

 
(Ⅱ)設A(xA,yA),B(xB,yB ),將y=kx+代入-y2=1,得(1-3k2)x2-6kx-9=0.…………………3分

由題意知,…………………6分解得,<k<1.

∴當<k<1時,l與雙曲線左支有兩個交點.…………………8分

(Ⅲ)由(Ⅱ)得:xA+xB =,∴yA+yB=(kxA+)+(kxB+)=k(xA+xB)+2=.

∴AB中點P的坐標為(,).…………………10分

設l0方程為:y=-x+b,將P點坐標代入l0方程,得b=.

∵<k<1,∴-2<1-3k2<0,∴b<-2.…………………13分

∴b的取值范圍為:(-¥,-2).…………………14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數f(x)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數的圖像上,其中=.
(1)證明:數列}是等比數列;
(2)設,求及數列{}的通項公式;
(3)記,求數列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統計發(fā)現,第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案