已知橢圓=1按向量a=(t-3,t2)(t∈R)平移后得到曲線E,設(shè)曲線E的右焦點(diǎn)為P.

(1)求P點(diǎn)軌跡C的方程;

(2)A、B為曲線C上的兩點(diǎn),F(0,),且(m∈R),求∠AOB(O為坐標(biāo)原點(diǎn))的最大值.

(文)已知函數(shù)f(x)=xn+1(n∈N*,x≠0).

(1)討論函數(shù)f(x)圖象的對稱性,并指出其一條對稱軸或一個(gè)對稱中心;

(2)令an=f′(x),求數(shù)列{an}的前n項(xiàng)和Sn.

答案:解:(1)設(shè)平移后的右焦點(diǎn)為P(x,y),易得已知橢圓的右焦點(diǎn)為F1(3,0),

+a=,即(3,0)+(t-3,t2)=(x,y),∴(t∈R),即軌跡C的方程為y=x2.

(2)易知F(0,)為曲線C的焦點(diǎn),又AF=mBF(m∈R).

設(shè)A(x1,x12),B(x2,x22),其中x1>0,x2<0.則kOA==x1,kOB==x2.

∴tan∠AOB=.?設(shè)直線AB的方程為y=kx+,代入y=x2,得x2-kx-=0,

∴x2x1=-,

代入?得tan∠AOB==(x2-x1)=-(x1-x2)≤-×2

=-(當(dāng)且僅當(dāng)AB∥x軸時(shí)取等號(hào)).

∴∠AOB≤π-arctan,即∠AOB的最大值為π-arctan.

(文)解:(1)當(dāng)n為偶數(shù)時(shí),因?yàn)閒(-x)=(-x)n+1=xn+1=f(x),即函數(shù)f(x)為偶函數(shù),所以其圖象關(guān)于y軸對稱.2分

當(dāng)n為奇數(shù)時(shí),因?yàn)閒(-x)=(-x)n+1=-xn+1,所以=1.

所以其圖象關(guān)于點(diǎn)(0,1)中心對稱.

〔或令g(x)=f(x)-1=xn,所以g(-x)=(-x)n=-xn=-g(x),即g(x)為奇函數(shù).

所以g(x)的圖象關(guān)于原點(diǎn)對稱,故函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)中心對稱〕

(2)an=f′(x)=nxn-1,6分所以Sn=1+2x+3x2+…+nxn-1.#當(dāng)x=1時(shí),Sn=;

當(dāng)x≠1時(shí),#式兩邊同乘x,得xSn=x+2x2+3x3+…+(n-1)xn-1+nxn.?

?式-#式可得Sn=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣A=
1a
-1b
,A的一個(gè)特征值λ=2,其對應(yīng)的特征向量是α1=
2
1

(Ⅰ)求矩陣A;
(Ⅱ)若向量β=
7
4
,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省福州市泉港二中高三(上)第11周周考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

本題有(1)、(2)、(3)三個(gè)選擇題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1).選修4-2:矩陣與變換
已知矩陣,A的一個(gè)特征值λ=2,其對應(yīng)的特征向量是
(Ⅰ)求矩陣A;
(Ⅱ)若向量,計(jì)算A2β的值.

(2).選修4-4:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為,點(diǎn)F1,F(xiàn)2為其左、右焦點(diǎn),直線l的參數(shù)方程為(t為參數(shù),t∈R).求點(diǎn)F1,F(xiàn)2到直線l的距離之和.
(3).選修4-5:不等式選講
已知x,y,z均為正數(shù).求證:

查看答案和解析>>

同步練習(xí)冊答案