【題目】如圖,在五棱錐中,平面平面,且

1已知點在線段上,確定的位置,使得平面;

2分別在線段上,若沿直線將四邊形向上翻折,恰好重合,求直線與平面所成角的正弦值.

【答案】1為靠近的三等分點;2.

【解析】

試題分析:1本題的五棱錐的底面可視為正方形折起一個角,先由線線平行推得面面平行,從而得到線面平行2先證明中點連線垂直于底面,建立空間直角坐標(biāo)系,寫出各點坐標(biāo),求出平面的法向量,由公式求出正弦值.

試題解析:解:1為靠近的三等分點,

在線段取一點,使得,連結(jié)

,

四邊形為平行四邊形,,

為靠近的三等分點,,

平面平面,而平面,平面

2的中點,連接,,又平面平面,

平面

如圖,建立空間直角 坐標(biāo)系,則

設(shè),則

翻折后,重合,,又

,從而,

設(shè)為平面的一個法向量,

,

,則

設(shè)直線與平面所成角為,則

故直線與平面所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形,的中點,且△是等邊三角形,沿把△折起至的位置,使得

1是線段的中點求證平面;

2求證:

3求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,的重心,.

(1)求證:平面

(2)若側(cè)面底面,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 是線段上一點.

點.

(1)確定的位置,使得平面平面;

(2)若平面,設(shè)二面角的大小為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求的展開式中的系數(shù)及展開式中各項系數(shù)之和;

(2)從0,2,3,4,5,6這6個數(shù)字中任取4個組成一個無重復(fù)數(shù)字的四位數(shù),求滿足條件的四位數(shù)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

1若曲線處的切線方程為.求實數(shù)的值;

2時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;

,若對一切正實數(shù)恒成立,求實數(shù)的取值范圍表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)求證:曲線在點處的切線過定點;

2)若在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;

3)求證:對任意給定的正數(shù),總存在,使得上為單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案