某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
積極參加班級(jí)工作不太主動(dòng)參加班級(jí)工作合計(jì)
學(xué)習(xí)積極性高18725
學(xué)習(xí)積極性一般61925
合計(jì)242650
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法點(diǎn)撥:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?并說明理由.(參考下表)

【答案】分析:(1)是一古典概型問題,把基本事件的總數(shù)與滿足要求的個(gè)數(shù)找出來,代入古典概率的計(jì)算公式即可.
(2)是獨(dú)立性檢驗(yàn)的應(yīng)用,由題中的數(shù)據(jù),計(jì)算出k2與臨界值比較即可得出結(jié)論
解答:解:(1)積極參加班級(jí)工作的學(xué)生有24人,總?cè)藬?shù)為50人,概率為;
不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生有19人,概率為
(2),
∵K2>6.635,
∴有99%的把握說學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度有關(guān)系.
點(diǎn)評(píng):本題把獨(dú)立性檢驗(yàn),概率的求法,列聯(lián)表等知識(shí)聯(lián)系在一起,是道綜合性題,難度不大,符合新課標(biāo)對(duì)于本部分的要求,希望通過本題把相關(guān)知識(shí)掌握好.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,其中學(xué)習(xí)積極性高的同學(xué)中,積極參加班級(jí)工作的有18名,不太主動(dòng)參加班級(jí)工作的有7名;學(xué)習(xí)積極性一般的同學(xué)中,積極參加班級(jí)工作的有6名,不太主動(dòng)參加班級(jí)工作的有19名.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān)系?
參考公式:K2統(tǒng)計(jì)量的表達(dá)式是:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下表:
  認(rèn)為作業(yè)多 認(rèn)為作業(yè)不多 總數(shù)
喜歡玩電腦游戲 18 9 27
不喜歡玩電腦游戲 8 15 23
總數(shù) 26 24 50
根據(jù)表中數(shù)據(jù)得到K2=
50×(18×15-8×9)2
27×23×24×26
5.059,因?yàn)閜(K2≥5.024)=0.025,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約為( 。
A、97.5%B、95%
C、90%D、無充分根據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行遲到與學(xué)習(xí)成績(jī)是否有關(guān)的調(diào)查,數(shù)據(jù)如下表:
學(xué)習(xí)成績(jī)前26名 學(xué)習(xí)成績(jī)后24名 總數(shù)
從不遲到的 18 9 27
有過遲到的 8 15 23
總數(shù) 26 24 50
根據(jù)表中數(shù)據(jù)得到K2=
50×(18×15-8×9)2
27×23×24×26
≈5.059

P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
查表可知,認(rèn)為遲到與學(xué)習(xí)成績(jī)有關(guān)系的把握大約為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下表:
認(rèn)為作業(yè)多 認(rèn)為作業(yè)不多 總數(shù)
喜歡玩電腦游戲 18 9 27
不喜歡玩電腦游戲 8 15 23
總數(shù) 26 24 50
根據(jù)表中數(shù)據(jù),則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案