已知直線y=kx-1與雙曲線x2-y2=4沒有公共點,則實數(shù)k的取值范圍為______.
由題意,直線y=kx-1代入雙曲線x2-y2=4,可得x2-(kx-1)2=4,整理得(1-k2)x+2kx-5=0
當1-k2=0,k=±1時,不符合條件;
當1-k2≠0時,由△=20-16k2<0,解得k>
5
2
或k<-
5
2

故答案為:k>
5
2
或k<-
5
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A(-3,0),B(3,0).若△ABC周長為16.
(1)求點C軌跡L的方程;
(2)過O作直線OM、ON,分別交軌跡L于M、N點,且OM⊥ON,求S△MON的最小值;
(3)在(2)的前提下過O作OP⊥MN交于P點.求證點P在定圓上,并求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線y=a交拋物線y=x2于A,B兩點,若該拋物線上存在點C,使得∠ACB為直角,則a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2,以F1,F(xiàn)2為焦點,離心率為
1
2
的橢圓C2與拋物線C1的一個交點為P.
(1)若橢圓的長半軸長為2,求拋物線方程;
(2)在(1)的條件下,直線l經過橢圓C2的右焦點F2,與拋物線C1交于A1,A2兩點,如果|A1A2|等于△PF1F2的周長,求l的斜率;
(3)是否存在實數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心在原點O,焦點在x軸,它的短軸長為2,過焦點與x軸垂直的直線與橢圓C相交于A,B兩點且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點N(1,0)的直線l交橢圓C于C、D兩點,交y軸于點P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F是拋物線y2=4x上的焦點,P是拋物線上的一個動點,若動點M滿足
FP
=2
FM
,則M的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的中心為坐標原點O,焦點在x軸上,焦距為2,F(xiàn)為右焦點,B1為下頂點,B2為上頂點,SB1FB2=1
(I)求橢圓的方程;
(Ⅱ)若直線l同時滿足下列三個條件:①與直線B1F平行;②與橢圓交于兩個不同的點P、Q;③S△POQ=
2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點在坐標原點,焦點在x軸上,拋物線C上的點M(2,m)到焦點F的距離為3.
(Ⅰ)求拋物線C的方程:
(Ⅱ)過點(2,0)的直線l與拋物線C交于A、B兩點,若|AB|=4
6
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點P(x0,y0)是橢圓C:
x2
5
+y2=1
上的一點.F1、F2是橢圓C的左右焦點.
(1)若∠F1PF2是鈍角,求點P橫坐標x0的取值范圍;
(2)求代數(shù)式
y20
+2x0
的最大值.

查看答案和解析>>

同步練習冊答案