已知函數(shù)f(x)=x2-2ax+b,a,b∈R.

(1)若a從集合{0,1,2,3}中任取一個(gè)元素,b從集合{0,1,2}中任取一個(gè)元素,求方程f(x)=0有兩個(gè)不相等實(shí)根的概率;

(2)若a從區(qū)間[0,2]中任取一個(gè)數(shù),b從區(qū)間[0,3]中任取一個(gè)數(shù),求方程f(x)=0沒有實(shí)根的概率.

答案:
解析:

  解:(1)取集合{0,1,2,3}中任一元素,取集合{0,1,2}中任一元素

  ∴的取值情況有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),(2,1),(2,2),(3,0)(3,1)(3,2)其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值,基本事件總數(shù)為12.

  設(shè)“方程有兩個(gè)不相等的實(shí)根”為事件A,

  當(dāng)時(shí)方程有兩個(gè)不相等實(shí)根的充要條件為

  當(dāng)時(shí),的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

  即A包含的基本事件數(shù)為6

  ∴方程有兩個(gè)不相等的實(shí)根的概率

  (2)∵從區(qū)間[0,2]中任取一個(gè)數(shù),從區(qū)間[0,3]中任取一個(gè)數(shù)

  則試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域

  這是一個(gè)矩形區(qū)域,其面積

  設(shè)“方程沒有實(shí)根”為事件B

  則事件B構(gòu)成的區(qū)域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/1493/0018/9c0c66118aeddadd6e7cd73dddb84f78/C/Image58.gif" width=276 HEIGHT=20>

  即圖中陰影部分的梯形,其面積

  由幾何概型的概率計(jì)算公式可得方程沒有實(shí)根的概率

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|mx|(x∈R),且f(4)=0.

(1)求實(shí)數(shù)m的值;

(2)作出函數(shù)f(x)的圖像;

(3)根據(jù)圖像指出f(x)的單調(diào)遞減區(qū)間;

(4)根據(jù)圖像寫出不等式f(x)>0的解集;

(5)求當(dāng)x∈[1,5)時(shí)函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)對數(shù)與對數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求t的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.

(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);

(2)若任意x∈R,f(x)g(x)恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆新課標(biāo)高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;

(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnxg(x)=ax2+3x.

(1)設(shè)直線x=1與曲線yf(x)和yg(x)分別相交于點(diǎn)P、Q,且曲線yf(x)和yg(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3xk有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;

(2)設(shè)函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案