若 P為橢圓上任意一點(diǎn),為左、右焦點(diǎn),

(1)若的中點(diǎn)為M,求證:;

(2)若,求之值;

(3)橢圓上是否存在點(diǎn)P,使,若存在,求出P點(diǎn)的坐標(biāo),

若不存在,請(qǐng)說(shuō)明理由。

 

【答案】

(1)證明:在△F1PF2中,MO為中位線,

∴|MO|=

=a-=5-|PF1|…….3分

(2)解:∵ |PF1|+|PF2|=10,

∴|PF1|2+|PF2|2=100-2|PF1|·|PF2|,

在△PF1F2中,cos 60°=,

∴|PF1|·|PF2|=100-2|PF1|·|PF2|-36,

∴|PF1|·|PF2|=.  ………8分

(3)解:設(shè)點(diǎn)P(x0,y0),則 .①

易知F1(-3,0),F(xiàn)2(3,0),故=(-3-x0,-y0),

=(3-x0,-y0),

 =0,∴x2-9+y2=0,②

由①②組成方程組,此方程組無(wú)解,故這樣的點(diǎn)P不存在. ……12分

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,F(xiàn)1、F2分別為其左、右焦點(diǎn),P在橢圓上任意一點(diǎn),且
F1P
F2P
的最大值為1,最小值為-2.
(1)求橢圓C的方程;
(2)設(shè)A為橢圓C的右頂點(diǎn),直線l是與橢圓交于M、N兩點(diǎn)的任意一條直線,若AM⊥AN,證明直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點(diǎn),P為橢圓上的點(diǎn),PF1⊥OX軸,且OP和橢圓的一條長(zhǎng)軸頂點(diǎn)A和短軸頂點(diǎn)B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點(diǎn),證明∠F1QF2
π
2

(3)過(guò)F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為20
3
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黃岡重點(diǎn)作業(yè)·高三數(shù)學(xué)(下) 題型:044

設(shè)橢圓=1(a>b>0)的焦點(diǎn)為F1、F2,P為橢圓上任意一點(diǎn),一條斜率為的直線交橢圓于A、B兩點(diǎn),若當(dāng)a變化時(shí),可同時(shí)滿足①∠F1PF2的最大值為;②直線l:ax+y+1=0平分線段AB.

試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,F1,F2分別為其左、右焦點(diǎn),P為橢圓上任意一點(diǎn),且·的最大值為1,最小值為-2.

(1)求橢圓C的方程;

(2)設(shè)A為橢圓C的右頂點(diǎn),直線l是與橢圓交于M,N兩點(diǎn)的任意一條直線,若AMAN,證明直線l過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一

點(diǎn),則的最大值為(     )

A.2               B.3              C.6               D.8

 

查看答案和解析>>

同步練習(xí)冊(cè)答案