稱一個(gè)函數(shù)是“好函數(shù)”當(dāng)且僅當(dāng)其滿足:定義在上;存在,使其在上單調(diào)遞增,在上單調(diào)遞減,則以下函數(shù)是“好函數(shù)”的有 
?;?;?;④
.②③

試題分析:解:①中函數(shù)y=|x-2|定義域?yàn)镽,y=|x-2|= ∴不存在a,使y=|x-2|在(-∞,a)上單調(diào)遞增,故不正確;②中函數(shù)y=x|x-2|定義域?yàn)镽,y=x|x-2|=y=x|x-2|在(-∞,1)、(2,+∞)上單調(diào)遞增,在(1,2)上單調(diào)遞減,滿足好函數(shù)的定義,故正確;③中函數(shù)y=x3-x+1定義域?yàn)镽,則y′=3x2-1<0解得x∈(- ,),y′=3x2-1>0解得x∈(-∞,-)∪(,+∞),∴y=x3-x+1在(-∞,-)、(,+∞)上單調(diào)遞增,在(-,)上單調(diào)遞減,滿足好函數(shù)的定義,故正確;④中函數(shù)y=x3+x+3定義域?yàn)镽,則y′=3x2+1>0恒成立,故不存在a<b,使函數(shù)y=x3+x+3在(a,b)上單調(diào)遞減,不滿足好函數(shù)的定義,故不正確;故答案為:②③
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,以及絕對值函數(shù)的處理方法和新定義,同時(shí)考查了轉(zhuǎn)化的思想,屬于中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某公司一年購買某種貨物200噸,分成若干次均勻購買,每次購買的運(yùn)費(fèi)為2萬元,一年存儲費(fèi)用恰好與每次的購買噸數(shù)的數(shù)值相等(單位:萬元),要使一年的總運(yùn)費(fèi)與總存儲費(fèi)用之和最小,則應(yīng)購買________次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)處有極大值7.
(Ⅰ)求的解析式;(Ⅱ)求=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在上的周期函數(shù),其周期,直線是它的圖象的一條對稱軸,且上是減函數(shù).如果是銳角三角形的兩個(gè)內(nèi)角,則(   )
A.B.
C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房價(jià),國家出臺“國五條”,要求賣房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔(dān),問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

美國華爾街的次貸危機(jī)引起的金融風(fēng)暴席卷全球,低迷的市場造成產(chǎn)品銷售越來越難,為此某廠家舉行大型的促銷活動(dòng),經(jīng)測算該產(chǎn)品的銷售量P萬件(生產(chǎn)量與銷售量相等)與促銷費(fèi)用萬元滿足,已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為元.
(Ⅰ)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(Ⅱ)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和公式的方法,可求得的值            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:是一次函數(shù),其圖像過點(diǎn),且,求的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求在圖象與軸交點(diǎn)處的切線方程;
(2)若在(1,2)上為單調(diào)函數(shù),求的范圍.

查看答案和解析>>

同步練習(xí)冊答案