已知點P是四邊形ABCD所在平面外一點,且P到這個四邊形各邊的距離相等,那么這個四邊形一定是( 。
A.圓內(nèi)接四邊形B.矩形
C.圓外切四邊形D.平行四邊形

精英家教網(wǎng)
如圖因為PB=PE=PF=PA,所以O(shè)A=OB=OE=OF,
即O到各邊距離相等,
所以四邊形為圓外切四邊形
故選  C
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:已知圓O的直徑是2,點C在直徑AB的延長線上,BC=1,點P是圓O上的一個動點,以PC為邊作正三角形PCD,且點D與圓心分別在PC的兩側(cè),求四邊形OPDC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,點C在直徑AB的延長線上,BC=1,點P是半圓上的一個動點,以PC為邊作正三角形PCD,且點D與圓心分別在PC兩側(cè).
(1)若∠POB=θ,試將四邊形OPDC的面積y表示成θ的函數(shù);
(2)求四邊形OPDC面積的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:必修二訓練數(shù)學北師版 北師版 題型:047

已知點P是平面四邊形ABCD所在平面外一點,且AB=BC,AD=CD,PA=PC.

求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省蚌埠四校聯(lián)盟高一自主招生考試數(shù)學試卷(解析版) 題型:填空題

如圖,△ABC是邊長為12的等邊三角形,點P是三角形內(nèi)的一點,過P分別作邊BC,CA,AB的垂線,垂足分別為D,E,F(xiàn).已知PD:PE:PF=1:2:3,那么四邊形BDPF的面積是            .

 

 

查看答案和解析>>

同步練習冊答案