已知函數(shù)滿足,且對(duì)一切實(shí)數(shù)都有,求實(shí)數(shù)的值.


解析:

,        (1)

,得 ,    (2)

(2)對(duì)任意恒成立的條件是,

將(1)中 代入得 ,

解得,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)已知函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•綿陽(yáng)一模)已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時(shí),恒有f(x)-f(y)=f(
x-y
1-xy
).又?jǐn)?shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達(dá)式;
(III)設(shè)bn=
1
2log2|f(an+1)
,Tn為數(shù)列{bn}的前n項(xiàng)和,若T2n+1-Tn
m
15
(其中m∈N*)對(duì)N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•宣武區(qū)一模)已知函數(shù)f(x)的定義域?yàn)镮,導(dǎo)數(shù)fn(x)滿足0<f(x)<2且fn(x)≠1,常數(shù)c1為方程f(x)-x=0的實(shí)數(shù)根,常數(shù)c2為方程f(x)-2x=0的實(shí)數(shù)根.
(1)若對(duì)任意[a,b]⊆I,存在x0∈(a,b),使等式f(b)-f(a)=(b-a)fn(x0)成立.求證:方程f(x)-x=0不存在異于c1的實(shí)數(shù)根;
(2)求證:當(dāng)x>c2時(shí),總有f(x)<2x成立;
(3)對(duì)任意x1、x2,若滿足|x1-c1|<1,|x2-c1|<1,求證:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆度廣東省高二理科數(shù)學(xué)月考試卷 題型:解答題

已知函數(shù)滿足,且有唯

 

一實(shí)數(shù)解。

(1)求的表達(dá)式 ;

(2)記,且,求數(shù)列的通項(xiàng)公式。

(3)記 ,數(shù)列{}的前 項(xiàng)和為 ,是否存在k∈N*,使得

 

 

對(duì)任意n∈N*恒成立?若存在,求出k的最小值,若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆度廣東省高二理科數(shù)學(xué)月考試卷 題型:解答題

已知函數(shù)滿足,且有唯

 

一實(shí)數(shù)解。

(1)求的表達(dá)式 ;

(2)記,且,求數(shù)列的通項(xiàng)公式。

(3)記 ,數(shù)列{}的前 項(xiàng)和為 ,是否存在k∈N*,使得

 

 

對(duì)任意n∈N*恒成立?若存在,求出k的最小值,若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案