精英家教網 > 高中數學 > 題目詳情

    定義在(1,1)上的函數f(x)滿足:對任意x、y(11)都有f(x)+f(y)=

    (1)求證:函數f(x)是奇函數;

    (2)如果當x(1,0)時,有f(x)0,求證:f(x)(1,1)上是單調遞減函數;

    (3)(2)的條件下解不等式:+0

 

答案:
解析:

答案:(1)證明:令xy=0,則f(0)+f(0)=f(0),故f(0)=0.

    令y=-x,則f(x)+f(-x)==f(0)=0.

    ∴f(-x)=-f(x),

    即函數f(x)是奇函數.

    (2)證明:設x1x2∈(-1,1),則

    f(x1)-f(x2)=f(x1)+f(-x2)=.

    ∵x1x2∈(-1,1),

    ∴x2x1>0,-1<x1x2<1.

    因此,∴,即f(x1)>f(x2).

    ∴函數f(x)在(-1,1)上是減函數.

    (3)解:不等式+>0,化為.

    ∵函數f(x)在(-1,1)上是減函數,

    ∴

    解得:x<-1.

    ∴原不等式的解集為{x<-1

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)是定義在[-1,1]上的函數,若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數的奇偶性;
(2)判斷函數f(x)在[-1,1]上是增函數,還是減函數,并用單調性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數,當x∈[-1,0]時,函數解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表達式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)為定義在[-1,1]上的奇函數,當x∈[-1,0]時,函數解析式是f(x)=
1
4x
-
a
2x
(a∈R)

(1)求f(x)在[-1,1]上的解析表達式;
(2)求f(x)在[-1,0]上的值域.

查看答案和解析>>

科目:高中數學 來源:專項題 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數,且f(1)=1,若m,n∈[-1,1],m+n≠0時,,
(Ⅰ)用定義證明:f(x)在[-1,1]上是增函數;
(Ⅱ)解不等式:
(Ⅲ)若f(x)≤t2-2at+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數t的取值范圍。

查看答案和解析>>

科目:高中數學 來源:2009-2010學年安徽省宣城市涇縣中學高一(上)12月段考數學試卷(解析版) 題型:解答題

已知函數f(x)是定義在[-1,1]上的函數,若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數的奇偶性;
(2)判斷函數f(x)在[-1,1]上是增函數,還是減函數,并用單調性定義證明你的結論;
(3)設f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案