精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)在三棱錐中,,平面平面,的中點.
(1) 證明:;
(2) 求所成角的大小.
(1)見解析;(2)
本試題主要是考查了線線的垂直的判定和線面角的求解運算的綜合運用。
(1)首先利用以為坐標原點,軸,軸,軸建立空間直角坐標系,然后表示出,根據數量積為零,得到垂直關系。
(2)利用第一問中坐標,可以進一步表示出,利用平面的法向量與直線的方向向量來得到夾角的公式。
解:(1)取,
平面,又為坐標原點,軸,軸,軸建立空間直角坐標系,                               ---------------2分

所以,
,即                               -----------------6分
(2)由(1)知,               -----------------8分
,得
則得平面                    ---------------10分
,所以        ------------------12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點.

(1)求的長;
(2)求的值;
(3)求證:A1BC1M(14分).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中,中點.

(1)求證://平面;
(2)求點到平面的距離;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱椎P-ABCD中,底面ABCD是邊長為的正方形,且PD=,PA=PC=.

(1)求證:直線PD⊥面ABCD;
(2)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知矩形ABCD,PA⊥平面ABCD于A,M,N分別為AB,PC的中點
(1)求證:MN⊥AB;
(2)若平面PDC與平面ABCD所成的二面角為θ,能否確定θ,使直線MN是異面直線AB與PC的公垂線?若能確定,求出的值;若不能確定,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求證:AE//平面DCF;
(Ⅱ)當AB的長為何值時,二面角A-EF-C的大小為

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

的直徑,點上的動點(點不與重合),過動點的直線垂直于所在的平面,分別是的中點,則下列結論錯誤的是  
A.直線平面B.直線平面
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論正確的是
A.PB⊥AD   B.平面PAB⊥平面PBC
C.直線BC∥平面PAED.直線PD與平面ABC所成的角為45°

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

,是兩個不同的平面,是兩條不重合的直線,下列命題中正確的是(  )
A.若,則.
B.若,則.
C.若,且,則.
D.若,則.

查看答案和解析>>

同步練習冊答案