在極坐標(biāo)系中,若過點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=   
【答案】分析:先將原極坐標(biāo)方程ρ=4cosθ兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解即得.
解答:解:將原極坐標(biāo)方程ρ=4cosθ,化為:
ρ2=4ρcosθ,
化成直角坐標(biāo)方程為:x2+y2-4x=0,
即y2+(x-2)2=4.此圓與直線x=3相交于A,B兩點(diǎn),
則|AB|=
故填:
點(diǎn)評:本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若過點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0無實(shí)根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點(diǎn)為C,點(diǎn)A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)谙铝袃深}中任選一題作答,如果多做則按所做的第一題評分)
(1)在極坐標(biāo)系中,若過點(diǎn)(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

(2)已知方程|2x-1|-|2x+1|=a+1有實(shí)數(shù)解,則a的取值范圍為
[-3,-1)
[-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(注意:請?jiān)谙铝卸}中任選一題作答,如果多做,則按所做的第一題評分)
A、(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,若過點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=
2
3
2
3

B、若不等式|2a-1|≤|x+
1
x
|
對一切非零實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
[-
1
2
3
2
]
[-
1
2
,
3
2
]

查看答案和解析>>

同步練習(xí)冊答案