數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有an,Sn,an2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=
lnnxan2
,求證:對(duì)任意實(shí)數(shù)x∈(1,e](e是常數(shù),e=2.71828…)和任意正整數(shù)n,總有Tn<2.
分析:(1)根據(jù)題意,可得2Sn=an+an2①與2Sn-1=an-1+an-1 2②成立,①-②得2an=an+an2-an-1-an-12,可以化簡(jiǎn)為an-an-1=1(n≥2),進(jìn)而可得{an}是公差為1的等差數(shù)列,將n=1代入①中,可得a1=1,由等差數(shù)列的通項(xiàng)公式,可得答案;
(2)由對(duì)數(shù)的性質(zhì),分析可得對(duì)任意x∈(1,e],有0<lnx<1,而an=n,則總有bn=
lnnx
an2
1
n2
,用放縮法,可得Tn
1
12
+
1
22
+…+
1
n2
<1+
1
1•2
+
1
2•3
+…+
1
(n-1)n
,由裂項(xiàng)相消法,對(duì)右式求和可得證明.
解答:解:(1)根據(jù)題意,對(duì)于任意n∈N*,總有an,Sn,an2成等差數(shù)列,則對(duì)于n∈N*,總有2Sn=an+an2①成立
2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12,即an+an-1=(an+an-1)(an-an-1);
∵an,an-1均為正數(shù),
∴an-an-1=1(n≥2)
∴數(shù)列{an}是公差為1的等差數(shù)列,
又n=1時(shí),2S1=a1+a12,解得a1=1
∴an=n.(n∈N*
(2)證明:由(1)的結(jié)論,an=n;對(duì)任意實(shí)數(shù)x∈(1,e],有0<lnx<1,
對(duì)于任意正整數(shù)n,總有bn=
lnnx
an2
1
n2

Tn
1
12
+
1
22
+…+
1
n2
<1+
1
1•2
+
1
2•3
+…+
1
(n-1)n

=1+1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
=2-
1
n
<2

對(duì)任意實(shí)數(shù)x∈(1,e](e是常數(shù),e=2.71828…)和任意正整數(shù)n,總有Tn<2
點(diǎn)評(píng):本題考查數(shù)列與不等式,類似(2)的證明不等式的問題,一般用放縮法,使用時(shí),注意適當(dāng)放縮,否則不會(huì)得到證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項(xiàng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)和為Sn(n∈N*),已知點(diǎn)(an,4Sn)在函數(shù)f (x)=x2+2x+1的圖象上.
(1)證明{an}是等差數(shù)列,并求an;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk
;
(3)對(duì)于(2)中的命題,對(duì)一般的各項(xiàng)均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請(qǐng)證明你的結(jié)論,如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,總有an、Sn、(an2成等差數(shù)列.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)bn=an(
1
2
)n
,數(shù)列{bn}的前n項(xiàng)和是Tn,求證:
1
2
Tn<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項(xiàng)均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•奉賢區(qū)二模)數(shù)列{an} 的各項(xiàng)均為正數(shù),a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)當(dāng)k=1,f(p,k)=p+k,p=5時(shí),求a2,a3;
(2)若數(shù)列{an}成等比數(shù)列,請(qǐng)寫出f(p,k)滿足的一個(gè)條件,并寫出相應(yīng)的通項(xiàng)公式(不必證明);
(3)當(dāng)k=1,f(p,k)=p+k時(shí),設(shè)Tn=a1+2a2+3a3+…+2an+an+1,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案