(12分)已知是函數(shù)的一個極值點。
(1)求; (2)求函數(shù)的單調(diào)區(qū)間;
(3)若直線與函數(shù)的圖象有3個交點,求的取值范圍。
(Ⅰ).(Ⅱ)的單調(diào)增區(qū)間是,的單調(diào)減區(qū)間是.(Ⅲ)的取值范圍為。
【解析】本試題主要是考察了導數(shù)在研究函數(shù)的中 運用,利用函數(shù)的極值點可知導數(shù)為零得到參數(shù)的取值,然后求解析式,并利用導數(shù)來判定函數(shù)的單調(diào)性以及研究常函數(shù)與函數(shù)的交點的問題的綜合運用。
(1)利用函數(shù)在是函數(shù)的一個極值點,說明了該點的導數(shù)值為零,得到參數(shù)的值。
(2)利用第一問的結論求解導數(shù),判定單調(diào)區(qū)間。
(3)要研究常函數(shù)與已知函數(shù)的交點問題,關鍵是弄清楚,函數(shù)y=f(x)與坐標軸的位置關系即可。
解:(Ⅰ)因為,所以,因此.
(Ⅱ)由(Ⅰ)知,,,
當時,,當時,,所以的單調(diào)增區(qū)間是
,的單調(diào)減區(qū)間是.
(Ⅲ)由(Ⅱ)知,在內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當或時,,所以的極大值為,極小值為,
因此,,
所以在的三個單調(diào)區(qū)間直線有的圖象各有一個交點,當且僅當,因此,的取值范圍為。
科目:高中數(shù)學 來源:2014屆四川達州第一中學高二下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
已知是函數(shù)的一個極值點,其中
(1)求與的關系式;
(2)求的單調(diào)區(qū)間;
(3)設函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年山東師大附中高三12月(第三次)模擬檢測理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分12分)已知是函數(shù)的一個極值點.
(Ⅰ)求的值;
(Ⅱ)當,時,證明:
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江省寧波萬里國際學校高二下期中文科數(shù)學試卷(解析版) 題型:解答題
已知是函數(shù)的一個極值點,其中,
(1)求與的關系式;
(2)求的單調(diào)區(qū)間;
(3)當時,函數(shù)的圖象上任意一點的切線斜率恒大于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年浙江省高三上學期第三次月考數(shù)學文卷 題型:解答題
(本小題滿分15分)
已知是函數(shù)的一個極值點,其中。
(Ⅰ)求與的關系表達式;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)當時,函數(shù)的圖象上任意一點的切線斜率恒大于,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高二下學期第一次月考理科數(shù)學試卷 題型:解答題
(本小題滿分14分)
已知是函數(shù)的一個極值點,其中,
(1)求與的關系式;
(2)求的單調(diào)區(qū)間;
(3)當時,函數(shù)的圖象上任意一點的切線斜率恒大于3,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com