已知集合A={x∈N|1<x<5},集合B={x∈N|2<x<6},則A∩B=(  )
A、{2,3}
B、{4,3}
C、{5,3}
D、{44,5}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:分別求出集合A、B,再由交集的運(yùn)算求出A∩B.
解答: 解:因?yàn)锳={x∈N|1<x<5}={2,3,4},B={x∈N|2<x<6}={3,4,5},
則A∩B={3,4},
故選:B.
點(diǎn)評:本題考查交集及其運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b=log32,a=ln2,c=0.5-0.01,則( 。
A、b<c<a
B、b<a<c
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,則有( 。
A、cosA>sinB且cosB>sinA
B、cosA<sinB且cosB<sinA
C、cosA>sinB且cosB<sinA
D、cosA<sinB且cosB>sinA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1.
(Ⅰ)證明:面PAD⊥面PCD;
(Ⅱ)求AC與PB所成的角的余弦值;
(Ⅲ)求線BP與面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|,
(1)若關(guān)于x的方程|f(x)|=g(x)只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=|f(x)|+g(x),當(dāng)x∈[-2,2]時(shí),不等式h(x)≤a2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
),數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{bn}滿足b1=a1,bn=log2(an+1),設(shè)Tn=
1
b1+n
+
1
b2+n
+…+
1
bn+n
,若Tn>m對n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2+b,g(x)=a1nx.
(1)若f(x)在x∈[-
1
2
,1)上的最大值為
3
8
,求實(shí)數(shù)b的值
(2)若存在x∈[1,e],使得g(x)≤-x2+(a+2)x成立,求實(shí)數(shù)a的取值范圍;
(3)在(1)的條件下,設(shè)F(x)=
f(x),x<1
g(x),x≥1
,對任意給定的正實(shí)數(shù)a,曲線y=F(x)上是否存在兩點(diǎn)P,Q使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)中,等與不等是相對的,例如“當(dāng)a≤b且a≥b時(shí),我們就可以得到a=b”.設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),且滿足f(-1)=0,對于任意實(shí)數(shù)x都有f(x)-x≥0,且當(dāng)x∈(0,2)時(shí),f(x)≤(
x+1
2
)2

(Ⅰ)求f(1)的值;
(Ⅱ)求證:a>0,c>0;
(Ⅲ)當(dāng)x∈[-1,1]時(shí),函數(shù)g(x)=f(x)-mx(m∈R)是單調(diào)的,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x2+2ax-3,x∈[0,2]的最值.

查看答案和解析>>

同步練習(xí)冊答案