如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個(gè)全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時(shí),求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.
(1)先證 AO⊥CO, AO⊥BD   (2)

試題分析:(1)根據(jù)題意知,在△AOC中,,
所以,所以AO⊥CO.
因?yàn)锳O是等腰直角E角形ABD的中線,所以AO⊥BD.
又BDCO=O,所以AO⊥平面BCD.
(2)法一 由題易知,CO⊥OD.如圖,以O(shè)為原點(diǎn),
OC、OD所在的直線分別為軸、軸建立如圖所示的空間直角坐標(biāo)系,
則有O(0,0,0),,
設(shè),則,
設(shè)平面ABD的法向量為,


所以,令,則
所以
因?yàn)槠矫鍮CD的一個(gè)法向量為,
且二面角的大小為,所以,
,整理得
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014543559575.png" style="vertical-align:middle;" />,所以
解得,,所以,
設(shè)平面ABC的法向量為,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014543730992.png" style="vertical-align:middle;" />,

,則,.所以
設(shè)二面角的平面角為,則

所以,即二面角的正切值為
法二 在△ABD中,BD⊥AO,在△BCD中,BD⊥CO,
所以∠AOC是二面角的平面角,即∠AOC=
如圖,過點(diǎn)A作CO的垂線交CO的延長(zhǎng)線于點(diǎn)H,
因?yàn)锽D⊥CO,BD⊥AO,且COAO=O,
所以BD⊥平面AOC.
因?yàn)锳H平面AOC,所以BD⊥AH.
又CO⊥AH,且COBD=O,所以AH⊥平面BCD.
過點(diǎn)A作AK⊥BC,垂足為K,連接HK.
因?yàn)锽C⊥AH,AKAH=A,所以BC⊥平面AHK.
因?yàn)镠K平面AHK,所以BC⊥HK,
所以∠AKH為二面角的平面角.

在△AOH中,∠AOH=,,則,
所以
在R t△CHK中,∠HCK=,所以
在 R t△AHK中,
所以二面角的正切值為
點(diǎn)評(píng):本小題主要考查空間線面關(guān)系、二面角的度量、直線與平面所成的角等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱中,AB=BC,,Q是AC上的點(diǎn),AB1//平面BC1Q.

(Ⅰ)確定點(diǎn)Q在AC上的位置;
(Ⅱ)若QC1與平面BB1C1C所成角的正弦值為,求二面角Q-BC1—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,四棱錐中,底面是邊長(zhǎng)為4的正方形,的交點(diǎn),平面,是側(cè)棱的中點(diǎn),異面直線所成角的大小是60.

(Ⅰ)求證:直線平面
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)正四棱錐的側(cè)面積為,若

(1)求四棱錐的體積;
(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正四棱錐中,,點(diǎn)M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在長(zhǎng)方體中,,過、、三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求棱的長(zhǎng);
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知所在的平面,是⊙的直徑,,C是⊙上一點(diǎn),且

(1) 求證:;
(2) 求證:
(3)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

AB為圓O的直徑,點(diǎn)E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖:平行四邊形ABCD中,,正方形ADEF所在平面與平面ABCD垂直,G,H分別是DF,BE的中點(diǎn).

(1)求證:GH∥平面CDE;
(2)若,求四棱錐F-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案