如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長(zhǎng)為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

解:如圖所示,B點(diǎn)的坐標(biāo)為(1,1,0),
因?yàn)锳點(diǎn)關(guān)于x軸對(duì)稱,得A(1,-1,0),
C點(diǎn)與B點(diǎn)關(guān)于y軸對(duì)稱,得C(-1,1,0),
D與C關(guān)于x軸對(duì)稱,的D(-1,-1,0),
又P(0,0,2),E為AP的中點(diǎn),F(xiàn)為PB的中點(diǎn),
由中點(diǎn)坐標(biāo)公式可得E(,-,1),F(xiàn)().
分析:由題意直接寫出B的坐標(biāo),利用對(duì)稱性以及中點(diǎn)坐標(biāo)公式分別求出A、B、C、D、E、F的坐標(biāo).
點(diǎn)評(píng):本題考查空間點(diǎn)的坐標(biāo)的求法,中點(diǎn)坐標(biāo)公式的應(yīng)用,對(duì)稱知識(shí)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長(zhǎng)為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃岡重點(diǎn)作業(yè)·高二數(shù)學(xué)(下) 題型:044

如圖所示,過正方形ABCD的頂點(diǎn)A,作PA⊥平面AB-CD,設(shè)PA=AB=a.

(1)求二面角B-PC-D的大;

(2)求平面PAB和平面PCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:047

如圖所示,SA⊥正方形ABCD所在平面,過A作與SC垂直的平面分別交SB、SC、SD于E、K、H,求證:E、H分別是點(diǎn)A在直線SB和SD上的射影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.5 空間直角坐標(biāo)系》2013年高考數(shù)學(xué)優(yōu)化訓(xùn)練(解析版) 題型:解答題

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長(zhǎng)為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點(diǎn),以O(shè)為原點(diǎn),射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點(diǎn),求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案