設(shè)△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,cos(A-C)+cosB=
32
,b2=ac,求B.
分析:本題考查三角函數(shù)化簡及解三角形的能力,關(guān)鍵是注意角的范圍對角的三角函數(shù)值的制約,并利用正弦定理得到sinB=
3
2
(負值舍掉),從而求出答案.
解答:解:由cos(A-C)+cosB=
3
2
及B=π-(A+C)得
cos(A-C)-cos(A+C)=
3
2
,
∴cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=
3
2
,
∴sinAsinC=
3
4

又由b2=ac及正弦定理得sin2B=sinAsinC,
sin2B=
3
4

sinB=
3
2
sinB=-
3
2
(舍去),
于是B=
π
3
或B=
3

又由b2=ac
知b≤a或b≤c
所以B=
π
3
點評:三角函數(shù)給值求值問題的關(guān)鍵就是分析已知角與未知角的關(guān)系,然后通過角的關(guān)系,選擇恰當?shù)墓剑矗喝绻桥c角相等,則使用同角三角函數(shù)關(guān)系;如果角與角之間的和或差是直角的整數(shù)倍,則使用誘導(dǎo)公式;如果角與角之間存在和差關(guān)系,則我們用和差角公式;如果角與角存在倍數(shù)關(guān)系,則使用倍角公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊答案