α∈(
π
2
,π)
,且sinα=
4
5
,則tanα=
-
4
3
-
4
3
分析:由同角三角函數(shù)的基本關(guān)系根據(jù)sinα=
4
5
,求出cosα 的值,再由tanα=
sinα
cosα
,運(yùn)算求得結(jié)果.
解答:解:若α∈(
π
2
,π)
,且sinα=
4
5
,由同角三角函數(shù)的基本關(guān)系可得 cosα=-
3
5

故 tanα=
sinα
cosα
=-
4
3
,
故答案為-
4
3
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,若
2
是4a與2b的等比中項(xiàng),則
2
a
+
1
b
的最小值為( 。
A、2
2
B、8
C、9
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
3
+
y2
2
=1
的左、右焦點(diǎn),直線l1過(guò)點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1,垂足為D,線段DF2的垂直平分線交l2于點(diǎn)M.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F1作直線交曲線C于兩個(gè)不同的點(diǎn)P和Q,設(shè)
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若-2∈{a-2,2a-1,a2-4},則實(shí)數(shù)a為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)已知函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(4-x),且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若-
π
2
<α<0,則點(diǎn)(cotα,cosα)必在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案