已知直線l:y=x+1,圓O:數(shù)學公式,直線l被圓截得的弦長與橢圓C:數(shù)學公式的短軸長相等,橢圓的離心率數(shù)學公式
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點M(0,數(shù)學公式)的動直線l交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得無論l如何轉(zhuǎn)動,以AB為直徑的圓恒過定點T?若存在,求出點T的坐標;若不存在,請說明理由.

解:(Ⅰ)則由題設可知b=1,(2分)
,∴,∴a2=4 (3分)
所以橢圓C的方程是.…(4分)
(Ⅱ)若直線l與y軸重合,則以AB為直徑的圓是x2+y2=1①
若直線l垂直于y軸,則以AB為直徑的圓是 ②…(6分)
由①②解得
由此可知所求點T如果存在,只能是(0,1).…(7分)
事實上點T(0,1)就是所求的點.證明如下:
當直線l的斜率不存在,即直線l與y軸重合時,以AB為直徑的圓為x2+y2=1,過點T(0,1);
當直線l的斜率存在,設直線方程為,代入橢圓方程,并整理,得(18k2+9)x2-12kx-16=0(8分)
設點A、B的坐標分別為A(x1,y1),B(x2,y2),則x1+x2=,x1x2=
=(x1,y1-1),=(x2,y2-1)
=x1x2+(y1-1)(y2-1)=(k2+1)x1x2-(x1+x2)+=
,即以AB為直徑的圓恒過定點T(0,1).…(11分)
綜上可知,在坐標平面上存在一個定點T(0,1)滿足條件.…(12分)
分析:(Ⅰ)由題設可知b=1,利用,即可求得橢圓C的方程;
(Ⅱ)先猜測T的坐標,再進行驗證.若直線l的斜率存在,設其方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量的坐標運算公式即可證得.
點評:本小題主要考查橢圓的標準方程、向量的坐標運算、直線與圓錐曲線的綜合問題等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+k經(jīng)過橢圓C:
x2
a2
+
y2
a2-1
=1,(a>1)
的右焦點F2,且與橢圓C交于A、B兩點,若以弦AB為直徑的圓經(jīng)過橢圓的左焦點F1,試求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+1和圓C:x2+y2=
12
,則直線l與圓C的位置關(guān)系為
相切
相切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,且線段AB的中點為(
2
3
, 
1
3
)

(1)求此橢圓的離心率.
(2)若橢圓右焦點關(guān)于直線l:y=-x+1的對稱點在圓x2+y2=5上,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知直線l:y=x+
6
,圓O:x2+y2=5,橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)的離心率e=
3
3
.直線l截圓O所得的弦長與橢圓的短軸長相等.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過圓O上任意一點P作橢圓E的兩條切線.若切線都存在斜率,求證這兩條切線互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+2,與拋物線x2=y交于A(xA,yA),B(xB,yB)兩點,l與x軸交于點C(xC,0).
(1)求證:
1
xA
+
1
xB
=
1
xC
;
(2)求直線l與拋物線所圍平面圖形的面積;
(3)某同學利用TI-Nspire圖形計算器作圖驗證結(jié)果時(如圖1所示),嘗試拖動改變直線l與拋物線的方程,發(fā)現(xiàn)
1
xA
+
1
xB
1
xC
的結(jié)果依然相等(如圖2、圖3所示),你能由此發(fā)現(xiàn)出關(guān)于拋物線的一般結(jié)論,并進行證明嗎?精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案