分析 法1:可畫出圖形,可以得出$\overrightarrow{AC}=-(\overrightarrow{CB}+\overrightarrow{CD})$,$\overrightarrow{BE}=-\overrightarrow{CB}+\frac{1}{2}\overrightarrow{CD}$,然后進行數(shù)量積的運算即可求出$\overrightarrow{AC}•\overrightarrow{BE}$的值.
法2:建立直角坐標系,利用向量法解決.
解答 解:如圖,
$\overrightarrow{AC}=-(\overrightarrow{CB}+\overrightarrow{CD})$,$\overrightarrow{BE}=\overrightarrow{BC}+\overrightarrow{CE}=-\overrightarrow{CB}+\frac{1}{2}\overrightarrow{CD}$;
∴$\overrightarrow{AC}•\overrightarrow{BE}=-(\overrightarrow{CB}+\overrightarrow{CD})•(-\overrightarrow{CB}+\frac{1}{2}\overrightarrow{CD})$
=${\overrightarrow{CB}}^{2}+\frac{1}{2}\overrightarrow{CB}•\overrightarrow{CD}-\frac{1}{2}{\overrightarrow{CD}}^{2}$
=1+0-2
=-1.
法2:分別以DC,DA所在直線為x,y軸,建立如圖所示平面直角坐標系,則:
A(0,1),C(2,0),B(2,1),E(1,0);
∴$\overrightarrow{AC}=(2,-1),\overrightarrow{BE}=(-1,-1)$;
∴$\overrightarrow{AC}•\overrightarrow{BE}=-2+1=-1$;
故答案為:-1.
點評 考查向量加法的平行四邊形法則,相反向量的概念,向量數(shù)乘的幾何意義,以及數(shù)量積的運算,向量垂直的充要條件.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x<-1 | B. | x>-1 | C. | x≤-1 | D. | x≥-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1009 | B. | 1008 | C. | 1007 | D. | 1006 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com